Low Latency FPGA Acceleration of Market Data Feed Arbitration

Stewart Denholm1, Hiroaki Inouey2, Takashi Takenakay2, Tobias Becker1 and Wayne Luk1

1Department of Computing, Imperial College London, UK
2NEC Corporation, Kawasaki, Japan
Overview

- Hardware accelerated, low latency A/B line arbitrator
 - 2 packet processing modes: low latency + high reliability
 - dynamically reconfigurable windowing
Overview

• Hardware accelerated, low latency A/B line arbitrator
 – 2 packet processing modes: low latency + high reliability
 – dynamically reconfigurable windowing

• Multiple market data feed protocols
 – NASDAQ TotalView-ITCH
 – OPRA
 – ARCA
Overview

• Hardware accelerated, low latency A/B line arbitrator
 – 2 packet processing modes: low latency + high reliability
 – dynamically reconfigurable windowing

• Multiple market data feed protocols
 – NASDAQ TotalView-ITCH
 – OPRA
 – ARCA

• Evaluation: Xilinx Virtex-5 + Virtex-6 FPGAs
 – 10x lower latency than commercial FPGA-based solution
 – 42-56ns latency in high-reliability mode
 – 5.25-6ns latency in low-latency mode (single cycle)
Background

- **A/B line arbitration:**
 - time-critical market data
 - retransmission of missing packets too time consuming
 - receive as two redundant UDP streams (A/B feed)

- **Challenge:**
 - deal with missing and out-of-order packets through arbitration between two lines
 - need high throughput and low latency
Accelerating A/B Line Arbitration

- Simultaneous streams: low-latency + high-reliability
- Dynamically reconfigurable:
 - 3 windowing modes
 - adapt to changes in downstream applications
Optimisations

- Network level operation
 - also deals with general network traffic
- Customisable and extensible
 - support various protocols, connectors
 - configurable datapath width, stored packet size/num

![Time-based windowing](image)

![Count-based windowing](image)
Implementation Results

- Implementation for three protocols
 - NASDAQ TotalView-ITCH
 - OPRA
 - ARCA
- Throughput > 20 Gbps
- 10x lower latency than commercial FPGA solution
- Xilinx Virtex-5
 - test with real market data over network card (2x10Gbps)
- Xilinx Virtex-6
 - NASDAQ TotalView-ITCH
 - 6ns (low-latency), 56ns (high-reliability)
 - OPRA and ARCA:
 - 5.25ns (low-latency), 42ns (high-reliability)
Summary

- Hardware accelerated, low latency A/B line arbitrator
 - 2 packet processing modes: low latency + high reliability
 - dynamically reconfigurable windowing

- Multiple market data feed protocols
 - NASDAQ TotalView-ITCH
 - OPRA
 - ARCA

- Evaluation: Xilinx Virtex-5 + Virtex-6 FPGAs
 - 10x lower latency than commercial FPGA-based solution
 - 42-56ns latency in high-reliability mode
 - 5.25-6ns latency in low-latency mode (single cycle)