Epitaxial oxides

Overview

Epitaxial oxides have long been thought to provide an ideal interface between silicon and a dielectric. Rare-earths oxides and their derivatives can, for example, be easily grown on Si(111). Perovskites such as SrTiO3 or SrHfO3 are good candidates on Si(001) due to their good structural and dielectric properties. A delicate balance between a thermodynamic and kinetic control during the heteroepitaxial process allows us to obtain high-quality thin films epitaxially grown on Si(001). Very few groups worldwide have mastered this method.

Perovskites are indeed a very rich family of compounds. Many compounds with a similar crystal structure possess outstanding properties such as ferro- and piezoelectricity, electro-optical activity and ferromagnetism. Therefore, SrTiO3 crystalline templates provide an excellent seed layer for most of these materials, and can be considered as a possible path to integrate oxide-based functionalities on silicon.

References

[1] C. Marchiori, M. Sousa, A. Guiller, H. Siegwart, J.-P. Locquet, J. Fompeyrine, G. J. Norga, and J. W. Seo
“Thermal stability of the SrTiO3/(Ba,Sr)O stacks epitaxially grown on Si”
Appl. Phys. Lett. 88, 072913 (2006).

[2] G. J. Norga, C. Marchiori, C. Rossel, A. Guiller, J. P. Locquet, H. Siegwart, D. Caimi, J. Fompeyrine, J. W. Seo, and Ch. Dieker
“Solid phase epitaxy of SrTiO3 on (Ba,Sr)O/Si(100): The relationship between oxygen stoichiometry and interface stability”
J. Appl. Phys. 99, 084102 (2006).

[3] Z. M. Rittersma, J. C. Hooker, G. Vellianitis, J.-P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, L. Pantisano, W. Deweerd, T. Schram, M. Rosmeulen, S. De Gendt, and A. Dimoulas
“Characterization of field-effect transistors with La2Hf2O7 and HfO2 gate dielectric layers deposited by molecular-beam epitaxy”
J. Appl. Phys. 99, 024508 (2006).

[4] C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.-P. Locquet, J. Fompeyrine, D. J. Webb, Ch. Dieker, and Jin Won Seo
“Field-effect transistors with SrHfO3 as gate oxide”
Appl. Phys. Lett. 89, 053506 (2006).

[5] M. Sousa, C. Rossel, C. Marchiori, H. Siegwart, D. Caimi, J.-P. Locquet, D. J. Webb, R. Germann, J. Fompeyrine, K. Babich, J. W. Seo, and Ch. Dieker
“Optical properties of epitaxial SrHfO3 thin films grown on Si”
J. Appl. Phys. 102, 104103 (2007).

[6] C. Rossel, M. Sousa, C. Marchiori, J. Fompeyrine, D. Webb, D. Caimi, B. Mereu, A. Ispas, J. P. Locquet, H. Siegwart, R.Germann, A. Tapponnier, K. Babich
“SrHfO3 as gate dielectric for future CMOS technology”
Microelectronic Engineering 84, 1869-1873 (2007).

[7] J. W. Seo, Ch. Dieker, A. Tapponnier, C. Marchiori, M. Sousa, J. -P. Locquet, J. Fompeyrine, A. Ispas, C. Rossel, Y. Panayiotatos, A. Sotiropoulos, A. Dimoulas
“Epitaxial germanium-on-insulator grown on (001) Si”
Microelectronic Engineering 84, 2328-2331 (2007).

[8] G. J. Norga, C. Marchiori, A. Guiller, J. P. Locquet, Ch. Rossel, H. Siegwart, D. Caimi, J. Fompeyrine, and T. Conard
“Phase of reflection high-energy electron diffraction oscillations during (Ba,Sr)O epitaxy on Si(100): A marker of Sr barrier integrity”
Appl. Phys. Lett. 87, 262905 (2005).

[9] J. W. Seo, J. Fompeyrine, A. Guiller, G. Norga, C. Marchiori, H. Siegwart, and J.-P. Locquet
“Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si”
Appl. Phys. Lett. 83, 5211 (2003).