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Conventional computers based on the von Neumann architecture perform computation by repeatedly transferring data
between their physically separated processing and memory units. As computation becomes increasingly data-centric
and the scalability limits in terms of performance and power are being reached, alternative computing paradigms with
collocated computation and storage are actively being sought. A fascinating such approach is that of computational
memory where the physics of nanoscale memory devices are used to perform certain computational tasks within the
memory unit in a non-von Neumann manner. We present an experimental demonstration using one million phase-
change memory devices organized to perform a high-level computational primitive by exploiting the crystallization
dynamics. Its result is imprinted in the conductance states of the memory devices. The results of using such a com-
putational memory for processing real-world data-sets show that this co-existence of computation and storage at the
nanometer scale could enable ultra-dense, low-power, and massively-parallel computing systems.

I. INTRODUCTION

In today’s computing systems based on the conventional von Neumann architecture (Fig. 1(a)), there are distinct memory
and processing units. The processing unit comprises the arithmetic and logic unit (ALU), a control unit and a limited amount of
cache memory. The memory unit typically comprises dynamic random-access memory (DRAM), where information is stored
in the charge state of a capacitor. Performing an operation (such as an arithmetic or logic operation), f , over a set of data
stored in the memory, A, to obtain the result, f (A), requires a sequence of steps in which the data must be obtained from the
memory, transferred to the processing unit, processed, and stored back to the memory. This results in a significant amount of
data being moved back and forth between the physically separated memory and processing units. This costs time and energy,
and constitutes an inherent bottleneck in performance.

To overcome this, a tantalizing prospect is that of transitioning to a hybrid architecture where certain operations, such as f ,
can be performed at the same physical location as where the data is stored (Fig. 1(b)). Such a memory unit that facilitates
collocated computation is referred to as computational memory. The essential idea is not to treat memory as a passive storage
entity, but to exploit the physical attributes of the memory devices to realize computation exactly at the place where the data
is stored. One example of computational memory is a recent demonstration of the use of DRAM to perform bulk bit-wise
operations1 and fast row copying2 within the DRAM chip. A new class of emerging nanocale devices, namely, resistive memory
or memristive devices with their non-volatile storage capability is particularly well suited for computational memory. In these
devices, information is stored in their resistance/conductance states3–6. An early proposal for the use of memristive devices
for in-place computing was the realization of certain logical operations using a circuit based on TiOx-based memory devices7.
The same memory devices were used simultaneously to store the inputs, perform the logic operation, and store the resulting
output. Subsequently, more complex logic units based on this initial concept have been proposed8–10. In addition to performing
logical operations, resistive memory devices, when arranged in a cross-bar configuration, can be used to perform matrix-vector
multiplications in an analog manner. This exploits the multi-level storage capability as well as Ohm’s law and Kirchhoff’s
law. Hardware accelerators based on this concept are now becoming an important subject of research11–17. However, in these
applications, the cross-bar array of resistive memory devices serves as a non-von Neumann computing core and the results of
the computation are not necessarily stored in the memory array.

Besides the ability to perform logical operations and matrix-vector multiplications, another tantalizing prospect of computa-
tional memory is that of realizing higher-level computational primitives by exploiting the rich dynamic behavior of its constituent
devices. The dynamic evolution of the conductance levels of those devices upon application of electrical signals can be used to
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perform in-place computing. A schematic illustration of this concept is shown in Fig. 1(c). Depending on the operation to be
performed, a suitable electrical signal is applied to the memory devices. The conductance of the devices evolves in accordance
with the electrical input, and the result of the computation is imprinted in the memory array. One early demonstration of this con-
cept was that of finding factors of numbers using phase-change memory (PCM) devices, a type of resistive memory devices18–20.
However, this procedure is rather sensitive to device variabilities and thus experimental demonstrations were confined to a small
number of devices. Hence, a large-scale experimental demonstration of a high-level computational primitive that exploits the
memristive device dynamics and is robust to device variabilities across an array is still lacking.

In this paper, we present an algorithm to detect temporal correlations between event-based data streams using computational
memory. The crystallization dynamics of PCM devices is exploited, and the result of the computation is imprinted in the very
same memory devices. We demonstrate the efficacy and robustness of this scheme by presenting a large-scale experimental
demonstration using an array of one million PCM devices. We also present applications of this algorithm to process real-world
data-sets such as weather data.

II. RESULTS

Dynamics of phase-change memory devices

A PCM device consists of a nanometric volume of phase-change material sandwiched between two electrodes. A schematic
illustration of a PCM device with mushroom-type device geometry is shown in Fig. 2(a))21. In an as-fabricated device, the
material is in the crystalline phase. When a current pulse of sufficiently high amplitude is applied to the PCM device (typically
referred to as the RESET pulse), a significant portion of the phase-change material melts owing to Joule heating. When the
pulse is stopped abruptly, the molten material quenches into the amorphous phase because of the glass transition. In the resulting
RESET state, the device will be in the low-conductance state as the amorphous region blocks the bottom electrode. The size
of the amorphous region is captured by the notion of an effective thickness, ua that also accounts for the asymmetric device
geometry22. PCM devices exhibit a rich dynamic behavior with an interplay of electrical, thermal and structural dynamics that
forms the basis for their application as computational memory. The electrical transport exhibits a strong field and temperature
dependence23. Joule heating and the thermal transport pathways ensure that there is a strong temperature gradient within the
PCM device. Depending on the temperature in the cell, the phase-change material undergoes structural changes, such as phase
transitions and structural relaxation24,25.

In our demonstration, we focus on a specific aspect of the PCM dynamics: the crystallization dynamics capturing the pro-
gressive reduction in the size of the amorphous region due to the phase transition from amorphous to crystalline (Fig. 2(b)).
When a current pulse (typically referred to as the SET pulse) is applied to a PCM device in the RESET state such that the tem-
perature reached in the cell via Joule heating is high enough, but below the melting temperature, a part of the amorphous region
crystallizes. At the nanometer scale, the crystallization mechanism is dominated by crystal growth due to the large amorphous–
crystalline interface area and the small volume of the amorphous region24. The crystallization dynamics in such a PCM device
can be approximately described by

dua

dt
=�vg(Tint), (1)

where vg denotes the temperature-dependent growth velocity of the phase-change material; Tint = Rth(ua)Pinp + Tamb is the
temperature at the amorphous–crystalline interface, and ua(0) = ua0 is the initial effective amorphous thickness24. Tamb is the
ambient temperature, and Rth is the effective thermal resistance that captures the thermal resistance of all possible heat pathways.
Experimental estimates of Rth and vg are shown in Fig. 2(c) and Fig. 2(d), respectively24. From the estimate of Rth as a function
of ua, one can infer that the hottest region of the device is slightly above the bottom electrode and that the temperature within
the device decreases monotonically with increasing distance from the bottom electrode. The estimate of vg shows the strong
temperature dependence of the crystal growth rate. Up to approx. 550 K, the crystal growth rate is negligible whereas it is
maximum at approx. 750 K. As a consequence of Equation (1), ua progressively decreases upon the application of repetitive
SET pulses, and hence the low-field conductance progressively increases. In subsequent discussions, the RESET and SET pulses
will be collectively referred to as write pulses. It is also worth noting that in a circuit-theoretic representation, the PCM device
can be viewed as a generic memristor, with ua serving as an internal state variable26–28.

Statistical correlation detection using computational memory

In this section, we show how the crystallization dynamics of PCM devices can be exploited to detect statistical correlations
between event-based data streams. This can be applied in various fields such as the Internet of Things (IoT), life sciences,
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networking, social networks, and large scientific experiments. For example, one could generate an event-based data stream
based on the presence or absence of a specific word in a collection of tweets. Real-time processing of event-based data streams
from dynamic vision sensors is another promising application area29. One can also view correlation detection as a key constituent
of unsupervised learning where one of the objectives is to find correlated clusters in data streams.

In a generic formulation of the problem, let us assume that there are N discrete-time binary stochastic processes arriving at a
correlation detector (see Fig. 3(a)). Let Xi = {Xi(k)} be one of the processes. Then Xi(k) is a random variable with probabilities

P[Xi(k) = 1] = p (2)
P[Xi(k) = 0] = 1� p, (3)

for 0  p  0.5. Let X j be another discrete-time binary stochastic process with the same value of parameter p. Then the
correlation coefficient of the random variables Xi(k) and Xj(k) at time instant k is defined as

c =
Cov[Xi(k),Xj(k)]p

Var[Xi(k)]Var[Xj(k)]
. (4)

Processes Xi and X j are said to be correlated if c > 0 and uncorrelated otherwise. The objective of the correlation detection
problem is to detect, in an unsupervised manner, an unknown subset of these processes that are mutually correlated.

As shown in Supplementary Note 1 and schematically illustrated in Fig. 3(b), one way to solve this problem is by obtaining
an estimate of the uncentered covariance matrix corresponding the processes denoted by

R̂i j =
1
K

K

Â
k=1

Xi(k)Xj(k). (5)

Next, by summing the elements of this matrix along a row or column, we can obtain certain numerical weights corresponding to
the processes denoted by Ŵi = ÂN

j=1 R̂i j. It can be shown that if Xi belongs to the correlated group with correlation coefficient
c > 0, then

E[Ŵi] = (N �1)p2 + p+(Nc �1)cp(1� p). (6)

Nc denotes the number of processes in the correlated group. In contrast, if Xi belongs to the uncorrelated group, then

E[Ŵi] = (N �1)p2 + p. (7)

Hence by monitoring Ŵi in the limit of large K, we can determine which processes are correlated with c > 0. Moreover, it can
be seen that with increasing c and Nc, it becomes easier to determine whether a process belongs to a correlated group.

We can show that this rather sophisticated problem of correlation detection can be solved efficiently using a computational
memory module comprising PCM devices by exploiting the crystallization dynamics. By assigning each incoming process to
a single PCM device, the statistical correlation can be calculated and stored in the very same device as the data passes through
the memory. The way it is achieved is depicted schematically in Fig. 3(c): At each time instance k, a collective momentum,
M(k) = ÂN

j=1 Xj(k), that corresponds to the instantaneous sum of all processes is calculated. The calculation of M(k) incurs little
computational effort as it just counts the number of non-zero events at each time instance. Next, an identical SET pulse is applied
potentially in parallel to all the PCM devices for which the assigned binary process has a value of 1. The duration or amplitude of
the SET pulse is chosen to be a linear function of M(k). For example, let the duration of the pulse d t(k) =CM(k) =C ÂN

j=1 Xj(k).
For the sake of simplicity, let us assume that the interface temperature, Tint, is independent of the amorphous thickness, ua. As
the pulse amplitude is kept constant, vg(Tint) = G , where G is a constant. Then from Equation 1, the absolute value of the change
in the amorphous thickness of the ith phase-change device at the kth discrete-time instance is

duai(k) = d t(k)vg(Tint) =CG
N

Â
j=1

Xj(k). (8)
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The total change in the amorphous thickness after K time steps can be shown to be

Duai(K) =
K

Â
k=1

duai(k)Xi(k)

=CG
K

Â
k=1

N

Â
j=1

Xi(k)Xj(k)

=CG
N

Â
j=1

K

Â
k=1

Xi(k)Xj(k)

= KCG
N

Â
j=1

R̂i j

= KCGŴi. (9)

Hence, from Equations 6 and 7, if Xi is one of the correlated processes, then Duai will be larger than if Xi is one of the
uncorrelated processes. Therefore by monitoring Duai or the corresponding resistance/conductance for all phase-change devices
we can determine which processes are correlated.

Experimental platform

Next, we present experimental demonstrations of the concept. The experimental platform (schematically shown in Fig. 4(a)) is
built around a prototype PCM chip that comprises 3 million PCM devices. More details on the chip are presented in the methods
section. As shown in Fig. 4(b)), the PCM array is organized as a matrix of word lines (WL) and bit lines (BL). In addition to
the PCM devices, the prototype chip integrates the circuitry for device addressing and for write and read operations. The PCM
chip is interfaced to a hardware platform comprising two field programmable gate array (FPGA) boards and an analog-front-end
(AFE) board. The AFE board provides the power supplies as well as the voltage and current reference sources for the PCM chip.
The FPGA boards are used to implement the overall system control and data management as well as the interface with the data
processing unit. The experimental platform is operated from a host computer, and a Matlab environment is used to coordinate
the experiments.

An extensive array-level characterization of the PCM devices was conducted prior to the experimental demonstrations. In one
experiment, 10,000 devices were arbitrarily chosen and were first RESET by applying a rectangular current pulse of 1 µs duration
and 440 µA amplitude. After RESET, a sequence of SET pulses of 50 ns duration were applied to all devices, and the resulting
device conductance values were monitored after the application of each pulse. The map between the device conductance and
the number of pulses is referred to as accumulation curve. The accumulation curves corresponding to different SET currents are
shown in Fig. 4(c). These results clearly show that the mean conductance increases monotonically with increasing SET current
(in the range from 50 µA and 100 µA) and with increasing number of SET pulses. From Fig. 4(d), it can also be seen that a
significant variability is associated with the evolution of the device conductance values. This variability arises from inter-device
as well as intra-device variability. The intra-device variability is traced to the differences in the atomic configurations of the
amorphous phase created via the melt-quench process after each RESET operation30,31. Besides the variability arising from the
crystallization process, additional fluctuations in conductance also arise from 1/ f noise32 and drift variability33.

Experimental demonstration with a million processes

In a first demonstration of correlation detection, we created the input data artificially, and generated one million binary
stochastic processes organized in a two-dimensional grid (Fig. 5(a)). We arbitrarily chose a subset of 95,525 processes, which
we mutually correlated with a relatively weak instantaneous correlation coefficient of 0.1, whereas the other 904,475 were
uncorrelated. The objective was to see if we can detect these correlated processes using the computational memory approach.
Each stochastic process was assigned to a single PCM device. First, all devices were RESET by applying a current pulse of 1 µs
duration and 440 µA amplitude. In this experiment, we chose to modulate the SET current while maintaining a constant pulse
duration of 50 ns. At each time instance, the SET current is chosen to be equal to 0.002⇤M(k) µA, where M(k) = ÂN

j=1 Xj(k) is
equal to the collective momentum. This rather simple calculation was performed in the host computer. Alternatively, it could be
done in one of the FPGA boards. Next, the on-chip write circuitry was instructed to apply a SET pulse with the calculated SET
current to all PCM devices for which Xi(k) = 1. To minimize the execution time, we chose not to program the devices if the
SET current was less than 25 µA. The SET pulses were applied sequentially. However, if the chip has multiple write circuitries
that can operate in parallel, then it is also possible to apply the SET pulses in parallel. This process of applying SET pulses was
repeated at every time instance. The maximum SET current applied to the devices during the experiment was 80 µA.
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As described earlier, owing to the temporal correlation between the processes, the devices assigned to those processes are
expected to go to a high conductance state. We periodically read the conductance values of all PCM devices using the on-chip
read circuitry and the on-chip analog-to-digital convertor (ADC). The resulting map of the conductance values is shown in
Fig. 5(b). Also shown is the corresponding distribution of the conductance values (Fig. 5(c)). This distribution shows that
we can distinguish between the correlated and the uncorrelated processes. We constructed a binary classifier by slicing the
histogram of Fig. 5(c) according to some threshold, above which processes are labelled correlated and below which processes
are labelled uncorrelated. The threshold parameter can be swept across the domain, resulting in an ensemble of different
classifiers, each with its own statistical characteristics (e.g., precision and recall). The area under the precision-recall curve
(AUC) is an excellent metric for quantifying the performance of the classifier. The AUC is 0.93 for the computational memory
approach compared to 0.095 that corresponds to a random classifier that simply labels processes as correlated with some arbitrary
probability. However, the performance is still short of that of an ideal classifier with AUC equal to one and this is attributed to
the variability and conductance fluctuations discussed earlier. However, it is remarkable that in spite of these issues, we are able
to perform the correlation detection with significantly high accuracy. Note that there are several applications, such as sensory
data processing, where these levels of accuracy would be sufficient. Moreover, we could improve the accuracy by using multiple
devices to interface with a single random process and by averaging their conductance values. This concept is also illustrated
in the experimental demonstration on weather data that is described next. The conductance fluctuations can also be minimized
using concepts such as projected phase-change memory34.

Note that the correlations need to be detected within a certain period of time. This arises from the finite conductance range
of the PCM devices. There is a limit to the ua and hence the maximum conductance values that the devices can achieve. The
accumulation curves in Fig. 4(d) clearly show that the mean conductance values begin to saturate after the application of a certain
number of pulses. If the correlations are not detected within a certain amount of time, the conductance values corresponding
to the correlated processes saturate while those corresponding to the uncorrelated processes continue to increase. Once the
correlations have been detected, the devices need to be RESET, and the operation has to be resumed to detect subsequent
correlations. The application of shorter SET pulses is one way to increase this time period. The use of multiple devices to
interface with the random processes can also increase the overall conductance range.

As per Equation (6), we would expect the level of separation between the distributions of correlated and uncorrelated groups
to increase with increasing values of the correlation coefficient. We could confirm experimentally that the correlated groups can
be detected down to very low correlation coefficients such as c = 0.01 (see Supplementary Note 2, Supplementary Movie 1 and
Supplementary Movie 2). We also quantified the performance of the binary classifier by obtaining the precision-recall curves and
could show that in all cases, the classifiers performed significantly better than a baseline, random classifier (see Supplementary
Figure 2). Experiments also show that there is a potential for this technique to be extended to detect multiple correlated groups
having different correlation coefficients (see Supplementary Note 3).

Experimental demonstration with weather data

A second demonstration is based on real-world data from 270 weather stations across the USA. Over a period of 6 months, the
rainfall data from each station constituted a binary stochastic process that was applied to the computational memory at one-hour
time steps. The process took the value 1 if rainfall occurred in the preceding one-hour time window, else it was 0 (Fig. 5(d)).
An analysis of the uncentered covariance matrix shows that several correlated groups exist and that one of them is predominant.
As expected, also a strong geographical correlation with the rainfall data exists (Fig. 5(e)). Correlations between the rainfall
events are also reflected in the geographical proximity between the corresponding weather stations. To detect the predominant
correlated group using computational memory, we used the same approach as above, but with 4 PCM devices interfacing with
each weather station data. The four devices were used to improve the accuracy. At each instance in time, the SET current was
calculated to be equal to 0.0013 ⇤M(k) µA. Next, the PCM chip was instructed to program the 270⇥ 4 devices sequentially
with the calculated SET current. The on-chip write circuitry applies a write pulse with the calculated SET current to all PCM
devices for which Xi(k) = 1. We chose not to program the devices if the SET current was less than 25 µA. The duration of the
pulse was fixed to be 50 ns, and the maximum SET current applied to the devices was 80 µA. The resulting device conductance
map (averaged over the four devices per weather station) shows that the conductance values corresponding to the predominant
correlated group of weather stations are comparably higher (Fig. 5(f)).

Based on a threshold conductance value chosen to be 2 µS (the threshold that gave the best classifier performance), we can
classify the weather stations into correlated and uncorrelated weather stations. This conductance threshold was chosen to get
the best classifier performance (see Supplementary Note 2). We can also make comparisons with established unsupervised
classification techniques such as k-means clustering. It was seen that, out of the 270 weather stations, there was a match for 245
weather stations. The computational memory approach classified 12 stations as uncorrelated that had been marked correlated
by the k-means clustering approach. Similarly, the computational memory approach classified 13 stations as correlated that had
been marked uncorrelated by the k-means clustering approach. Given the simplicity of the computational memory approach, it
is remarkable that it can achieve this level of similarity with such a sophisticated and well-established classification algorithm



6

(see Supplementary Note 4 for more details).

III. DISCUSSION

The scientific relevance of the presented work is that we have convincingly demonstrated the ability of computational memory
to perform certain high-level computational tasks in a non-von Neumann manner by exploiting the dynamics of resistive memory
devices. We have also demonstrated the concept experimentally at the scale of a million PCM devices. Even though we
programmed the devices sequentially in the experimental demonstrations using the prototype chip, we could also program them
in parallel provided there is a sufficient number of write modules. A hypothetical computational memory module performing
correlation detection need not be substantially different from conventional memory modules (see Supplementary Note 5). The
main constituents of such a module will also be a memory controller and a memory chip. Tasks such as computing M(k) can
easily be performed in the memory controller. The memory controller can then convey the write/read instructions to the memory
chip.

In order to gain insight into the potential advantages of a correlation detector based on computational memory, we have
compared the hypothetical performance of such a module with that of various implementation using state-of-the-art computing
hardware (see Supplementary Note 6). For this study, we have designed a multi-threaded implementation of correlation detection,
an implementation that can leverage the massive parallelism offered by graphical processing units (GPUs), as well as a scale-out
implementation that can run across several GPUs. All implementations were compiled and executed on an IBM Power System
S822LC system. This system has 2 POWER8 CPUs (each comprising 10 cores) and 4 Nvidia Tesla P100 graphical processing
units (attached using the NVLink interface). A detailed profiling of the GPU implementation reveals two key insights. Firstly,
we find that the fraction of time computing the momentum M(k) is around 2% of the total execution time. Secondly, we observe
that the performance is ultimately limited by the memory bandwidth of the GPU device. We then proceed to estimate the time
that would be needed to perform the same task using a computational memory module: we determine the time required to
compute the momentum on the memory controller, as well as the additional time required to perform the in-memory part of
the computation. We conclude that by using such a computational memory module, one could accelerate the task of correlation
detection by a factor of 200 relative to an implementation that uses 4 state-of-the-art GPU devices. We have also performed
power profiling of the GPU implementation, and conclude that the computational memory module would provide a significant
improvement in energy consumption of two order of magnitude (see Supplementary Note 6).

An alternative approach to using PCM devices will be to design an application-specific chip where the accumulative behavior
of PCM is emulated using complementary metal-oxide semiconductor (CMOS) technology using adders and registers (see
Supplementary Note 7). However, even at a relatively large 90 nm-technology node, the areal footprint of the computational
phase-change memory is much smaller than that of CMOS-only approaches, even though the dynamic power consumption is
comparable. By scaling the devices to smaller dimensions and by using shorter write pulses, these gains are expected to increase
several fold35,36. The ultra-fast crystallization dynamics and non-volatility ensure a multi-time-scale operating window ranging
from a few tens of nanoseconds to years. These attributes are particularly attractive for slow processes, where the leakage of
CMOS would dominate the dynamic power because of the low utilization rate.

It can be shown that a single-layer spiking neural network can also be used to detect temporal correlations30. The event-based
data-streams can be translated into pre-synaptic spikes to a synaptic layer. Based on the synaptic weights, the postsynaptic
potentials are generated and added to the membrane potential of a leaky integrate-and-fire neuron. The temporal correlations
between the presynaptic input spikes and the neuronal-firing events result in an evolution of the synaptic weights due to a
feedback-driven competition among the synapses. In the steady state, the correlations between the individual input streams can
be inferred from the distribution of the synaptic weights or the resulting firing activity of the postsynaptic neuron. Recently, it
was shown that in such a neural network, PCM devices can serve as the synaptic elements37,38. One could argue that the synaptic
elements serve as some form of computational memory. Even though both approaches aim to solve the same problem, there
are some notable differences. In the neural network approach, it is the spike-timing-dependent-plasticity rule and the network
dynamics that enable correlation detection. One could use any passive multi-level storage element to store the synaptic weight.
Also note that the neuronal input is derived based on the value of the synaptic weights. It is challenging to implement such a
feedback architecture in a computational memory unit. Such feedback architectures are also likely to be much more sensitive to
device variabilities and nonlinearities and are not well suited for detecting very low correlations37,39.

Detection of statistical correlations is just one of the computational primitives that could be realized using the crystallization
dynamics. Another application of crystallization dynamics is that of finding factors of numbers, which we referred to in the
introduction20. Assume that a PCM device is initialized in such a way that after the application of X number of pulses, the
conductance exceeds a certain threshold. To check whether X is a factor of Y , Y number of pulses are applied to the device,
re-initializing the device each time the conductance exceeds the threshold. It can be seen that if after the application of Y pulses,
the conductance of the device is above the threshold, then X is a factor of Y . Another fascinating application of crystallization
dynamics is to realize matrix-vector multiplications. To multiple an N ⇥N matrix, A, with a N ⇥1vector, x, the elements of the
matrix and the vector can be translated into the durations and amplitudes of a sequence of crystallizing pulses applied to an array
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of N PCM devices. It can be shown that by monitoring the conductance levels of the PCM devices, one obtains a good estimate
of the matrix-vector product (see Supplementary Note 8). Note that such an approach consumes only N devices compared to the
existing approach based on the Kirchhoff’s circuit laws that requires N ⇥N devices.

In addition to the crystallization dynamics, one could also exploit other rich dynamic behavior in PCM devices, such as the
dynamics of structural relaxation. Whenever an amorphous state is formed via the melt-quench process, the resulting unsta-
ble glass state relaxes to an energetically more favorable ideal glass state25,40–42 (see Supplementary Note 9). This structural
relaxation, which codes the temporal information of the application of write pulses, can be exploited to perform tasks such as
the detection of rates of processes in addition to their temporal correlations (see Supplementary Note 9). It is also foreseeable
that by further coupling the dynamics of these devices, we can potentially solve even more intriguing problems. Suggestions
of such memcomputing machines that could solve certain non-deterministic polynomial (NP) problems in polynomial (P) time
by exploiting attributes, such as the inherent parallelism, functional polymorphism, and information overhead are being actively
investigated43,44. The concepts presented in this work could also be extended to the optical domain using devices such as pho-
tonic PCM45. In such an approach, optical signals instead of electrical signals will be used to program the devices. These
concepts are also not limited to PCM devices: several other memristive device technologies exist that possess sufficiently rich
dynamics to serve as computational memory46. However, it is worth noting that PCM technology is arguably the most advanced
resistive memory technology at present with a very well established multi-level storage capability21. The read endurance is
assumed to be unlimited. There are also recent reports of more than 1012 RESET/SET endurance cycles47. Note that in our
experiments, we mostly apply only the SET pulses, and in this case the endurance is expected to be substantially higher.

To summarize, the objective of our work was to realize a high-level computational primitive or machine-learning algorithm
using computational memory. We proposed an algorithm to detect temporal correlations between event-based data streams
that exploits the crystallization dynamics of PCM devices. The conductance of the PCM devices receiving correlated inputs
evolves to a high value, and by monitoring these conductance values we can detect the temporal correlations. We performed
a large-scale experimental demonstration of this concept using a million PCM devices, and could successfully detect weakly
correlated processes in artificially generated stochastic input data. This experiment demonstrates the efficacy of this concept
even in the presence of device variability and other non-ideal behavior. We also successfully processed real-world data sets from
weather stations in the United States and obtained classification results similar to the k-means clustering algorithm. A detailed
comparative study with respect to state-of-the-art von Neumann computing systems showed that computational memory could
lead to orders of magnitude improvements in time/energy-to-solution compared to conventional computing systems.

IV. METHODS

Phase-change memory chip

The PCM devices were integrated into the chip in 90 nm CMOS technology32. The phase-change material is doped Ge2Sb2Te2
(d-GST). The bottom electrode has a radius of approx. 20 nm and a length of approx. 65 nm, and was defined using a sub-
lithographic key-hole transfer process48. The phase-change material is approx. 100 nm thick and extends to the top electrode.
Two types of devices are available on-chip. They differ by the size of their access transistor. The first sub-array contains 2 million
devices. In the second sub-array, which contains 1 million devices, the access transistors are twice as large. All experiments in
this work were done on the second sub-array, which is organized as a matrix of 512 word lines (WL) and 2048 bit lines (BL).
The selection of one PCM device is done by serially addressing a WL and a BL. A single selected device can be programmed by
forcing a current through the BL with a voltage-controlled current source. For reading a PCM cell, the selected BL is biased to
a constant voltage of 200 mV. The resulting read current is integrated by a capacitor, and the resulting voltage is then digitized
by the on-chip 8-bit cyclic ADC. The total time of one read is 1 µs. The readout characteristic is calibrated by means of on-chip
reference poly-silicon resistors.

Generation of 1M random processes and experimental details

Let Xr be a discrete binary process with probabilities P(Xr(k) = 1) = p and P(Xr(k) = 0) = 1� p. Using Xr as the reference
process, N binary processes can be generated via the stochastic functions39

q = P(Xi(k) = 1|Xr(k) = 1) = p+
p

c(1� p) (10)
f = P(Xi(k) = 1|Xr(k) = 0) = p(1�

p
c) (11)

P(Xi(k) = 0) = 1�P(Xi(k) = 1). (12)
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It can be shown that E(Xi(k)) = p and Var(Xi(k)) = p(1� p). If two processes Xi and X j are both generated using Equations
10 to 12, then the expectation of their product is given by:

E(Xi(k)Xj(k)) = P(Xi(k) = 1,Xj(k) = 1) = Â
v2{0,1}

P(Xi(k) = 1,Xj(k) = 1|Xr(k) = v)P(Xr(k) = v).

Conditional on the value of the process Xr, the two processes Xi and X j are statistically independent by construction, and thus
the conditional joint probability P(Xi(k) = 1,Xj(k) = 1|Xr(k) = v) can be factorized as follows:

E(Xi(k)Xj(k)) = Â
v2{0,1}

P(Xi(k) = 1|Xr(k) = v)P(Xj(k) = 1|Xr(k) = v)P(Xr(k) = v)

= q 2 p+f 2(1� p)
= p2 + cp(1� p),

where the final equality is obtained by substituting the preceding expressions for q and f , followed by some simple algebraic
manipulation. It is then straightforward to show that the correlation coefficient between the two processes is equal to c as shown
below:

Cov(Xi(k)Xj(k)) = E(Xi(k)Xj(k))�E(Xi(k))E(Xj(k))

= p2 + cp(1� p)� p2

Cov(Xi(k)Xj(k))p
Var(Xi)Var(Xj)

= c (13)

For the experiment presented, we chose an Xr where p = 0.01. A million binary processes were generated. Of these,
Nc = 95,525 are correlated with c > 0. The remaining 904,475 processes are mutually uncorrelated. Each process is mapped to
one pixel of a 1000 ⇥ 1000 pixel black-and-white sketch of Alan Turing: white pixels are mapped to the uncorrelated processes;
black pixels are mapped to the correlated processes. The seemingly arbitrary choice of Nc arises from the need to match with the
black pixels of the image. The pixels turn on and off in accordance with the binary values of the processes. One phase-change
memory device is allocated to each of the one million processes.

Weather data-based processes and experimental details

The weather data was obtained from the National Oceanic and Atmospheric Administration (http://www.noaa.gov/) database
of quality-controlled local climatological data. It provides hourly summaries of climatological data from approximately 1600
weather stations in the United States of America. The measurements were obtained over a 6-month period from January 2015
to June 2015 (181 days, 4344 hours). We generated one binary stochastic process per weather station. If it rained in any given
period of 1 hour in a particular geographical location corresponding to a weather station, then the process takes the value 1; else
it will be 0. For the experiments on correlation detection, we picked 270 weather stations with similar rates of rainfall activity.

Data availability: The data that support the findings of this study are available from the corresponding author upon request.
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38Pantazi, A., Woźniak, S., Tuma, T. & Eleftheriou, E. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology 27, 355205 (2016).
39Gütig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. The Journal

of neuroscience 23, 3697–3714 (2003).
40Boniardi, M. & Ielmini, D. Physical origin of the resistance drift exponent in amorphous phase change materials. Applied Physics Letters 98, 243506 (2011).
41Sebastian, A., Krebs, D., Le Gallo, M., Pozidis, H. & Eleftheriou, E. A collective relaxation model for resistance drift in phase change memory cells. In IEEE

International Reliability Physics Symposium (IRPS), MY–5 (IEEE, 2015).
42Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Physical Review B 93, 115201 (2016).
43Traversa, F. L. & Di Ventra, M. Universal memcomputing machines. IEEE Transactions on Neural Networks and Learning Systems 26, 2702–2715 (2015).
44Di Ventra, M. & Pershin, Y. V. Just add memory. Scientific American 312, 56–61 (2015).
45Rı́os, C. et al. Integrated all-photonic non-volatile multi-level memory. Nature Photonics 9, 725–732 (2015).



10

46Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Materials 6, 833–840 (2007).
47Kim, W. et al. ALD-based confined PCM with a metallic liner toward unlimited endurance. In IEEE International Electron Devices Meeting (IEDM), 4–2

(IEEE, 2016).
48Breitwisch, M. et al. Novel lithography-independent pore phase change memory. In IEEE Symposium on VLSI Technology, 100–101 (IEEE, 2007).

ACKNOWLEDGEMENTS

We would like to thank several colleagues from IBM Research - Zurich and the IBM T. J. Watson Research Center, USA
in particular Haris Pozidis, Milos Stanisavljevic, Urs Egger and Matthew BrightSky. We would also like to thank Charlotte
Bolliger for help with the preparation of the manuscript and Sheethal Alice Tharian for help with the artwork. This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 682675).

AUTHOR CONTRIBUTIONS

A.S. and T.T. conceived the idea. A.S., N.P., and M.L.G. performed the experiments. A.S. and T.T. analyzed the data. T.P.
and L.K. performed the comparative study with conventional computing systems. E.E. provided managerial support and critical
comments. A.S. wrote the manuscript with input from all the authors.

COMPETING INTERESTS

The authors declare no competing financial interests.



11

FIGURE CAPTIONS

Processing unit

Control unit

ALU

Cache

Memory

Bank #1

...

FETCH

STORE

"bottleneck"

Memory

...Bank #N

Processing unit

Control unit

ALU

Cache

CONTROL

Bank #N

Bank #1

Co
m

pu
ta

tio
na

l
m

em
or

y
Co

nv
en

tio
na

l
m

em
or

y

c
Computational
memory control

unit

Control
signal

Control
signal

Electrical input

Dynamic
evolution of
conductance

CONTROL

Resistive 
memory 
elements

a b

FIG. 1. The concept of computational memory (a) Schematic of the von Neumann computer architecture, where the memory and computing
units are physically separated. A denotes information stored in a memory location. To perform a computational operation, f (A), and to store
the result in the same memory location, data is shuttled back and forth between the memory and the processing unit. (b) An alternative
architecture where f (A) is performed in place in the same memory location. (c) One way to realize computational memory is by relying on the
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SUPPLEMENTARY NOTE 1: METHODOLOGY FOR DETECTING TEMPORAL CORRELATIONS

This note provides additional details on the technique to detect correlations between random processes. Let Xi = {Xi(k)} be
a discrete-time binary stochastic process. Then Xi(k) is a random variable with probabilities

P [Xi(k) = 1] = p (1)
P [Xi(k) = 0] = 1� p, (2)

for 0  p  0.5. It can be shown that

E[Xi(k)] = p (3)
Var[Xi(k)] = p(1� p). (4)

Let Xi and Xj be discrete-time binary stochastic processes with the same value of parameter p. Then the correlation coefficient
of the random variables Xi(k) and Xj(k) at time instant k is defined as

c =
Cov[Xi(k), Xj(k)]p
Var[Xi(k)]Var[Xj(k)]

=
E[Xi(k)Xj(k)]� p2

p(1� p)
. (5)

From Equation (5), E[Xi(k)Xj(k)] denoted by Rij(k) is given by

Rij(k) = p2 + cp(1� p). (6)

Let k 2 {1, 2, 3, . . .K}, then for stationary ergodic processes, an estimate of Rij which is independent of k is given by

R̂ij =
1

K

KX

k=1

Xi(k)Xj(k). (7)

It can easily be seen that

Rij = E[R̂ij ]

=
1

K

KX

k=1

E[Xi(k)Xj(k)]

=

⇢
p2 + cp(1� p), for i 6= j
p, for i = j.

(8)

Assume that there are N such discrete-time binary processes, of which Nc are correlated. Moreover, let us define Ŵi =PN
j=1 R̂ij . From Equation (8), it can be shown that if Xi belongs to the correlated group with correlation coefficient c > 0, then

E[Ŵi] = (N � 1)p2 + p+ (Nc � 1)cp(1� p). (9)

In contrast, if Xi belongs to the uncorrelated group, then

E[Ŵi] = (N � 1)p2 + p. (10)

It is possible to show that the variance of the estimator Ŵi decreases as the number of time steps K grows:

Var[Ŵi] = E[Ŵ 2
i ]� E[Ŵi]

2

=
1

K

NX

j=1

NX

j0=1

Cov[Xi(k)Xj(k), Xi(k)Xj0(k)]


1

K

NX

j=1

NX

j0=1

q
Var[Xi(k)Xj(k)]Var[Xi(k)Xj0(k)] 

N2

4K
. (11)

Hence by monitoring Ŵi in the limit of large K, we can determine which processes are correlated with c > 0. Moreover, it can
be seen that with increasing c and Nc, it becomes easier to determine whether a process belongs to a correlated group.
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SUPPLEMENTARY NOTE 2: DEPENDENCE ON THE CORRELATION COEFFICIENT
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Supplementary Figure 1. Dependence on the correlation coefficient. Histograms showing the distribution of device conductance values at
the end of the experiment for different values of c. The separation between the correlated and the uncorrelated groups increases with increasing
values of c.

As discussed in Supplementary Note 1, the ability to detect temporal correlations heavily depends on the extent of correlation.
For example, one would expect that the task becomes progressively easier with increasing correlation coefficient. Experimental
results indeed show this trend. Experiments were performed with 1 million processes in total. Of these, we arbitrarily chose
a subset of 95,525 processes to be mutually correlated with an instantaneous correlation coefficient, c. The remaining 904,475
processes are uncorrelated. Supplementary Figure 1 shows distribution of the device conductance values at the end of the
experiment for different values of c. It can be seen that with increasing values of c, there is a larger separation between the
correlated and uncorrelated groups.

To perform correlation detection, we construct a binary classifier by slicing the histograms of Supplementary Figure 1 ac-
cording to some threshold, above which processes are labelled correlated and below which processes are labelled uncorrelated.
The threshold parameter can be swept across the domain, resulting in an ensemble of different classifiers, each with its own
statistical characteristics (e.g., precision and recall). In Supplementary Figure 2, we plot the precision–recall curves for such an
ensemble for increasing values of the correlation coefficient, c. We have opted to study the precision–recall curves rather than
the corresponding receiver operator characteristic (ROC) curves because it is well established that precision–recall analysis is
better suited for measuring the classification performance on imbalanced datasets1. As a baseline, we also present the precision–
recall curve for the random classifier that simply labels processes as correlated with some arbitrary probability. As expected,
we observe an increasingly better quality of classification (i.e., more area under the precision–recall curve) as the correlation
coefficient increases. In all cases, the area under the curve is significantly larger than that of the baseline, random classifier.
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SUPPLEMENTARY NOTE 3: DETECTING MULTIPLE CORRELATIONS
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Supplementary Figure 3. Detecting multiple correlations. The distribution of conductance levels after 2455 time steps clearly shows that
the algorithm is able to detect multiple correlations.

It is also possible to detect multiple correlations using the computational memory approach. To show this, an experiment is
presented with 1 million processes in total. Of these 889,007 are uncorrelated. 56,296 processes are correlated with a correlation
coefficient of 0.05, whereas 54,697 processes are correlated with a correlation coefficient of 0.08. The sets of correlated processes
are mutually uncorrelated. Each of the processes is assigned to a single PCM device. The resulting distribution of conductance
levels after 2455 time steps is shown in Supplementary Figure 3. One can clearly see the difference in the conductance levels
associated with the devices assigned to the two different correlated groups.
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SUPPLEMENTARY NOTE 4: COMPARISON WITH k-MEANS CLUSTERING ALGORITHM
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Supplementary Figure 4. Comparison with k-means clustering algorithm. (a) The k-means clustering algorithm was used to cluster the
weather stations into a correlated and an uncorrelated group. In the resulting map of the United States, the correlated weather stations are
denoted in green and the uncorrelated ones in black. (b) The computational memory approach was also used to group the weather stations into
a correlated and an uncorrelated group. In the resulting map of the United States, the correlated weather stations are denoted in green and the
uncorrelated ones in black. (c) Out of the 270 weather stations, there was agreement between the two approaches for 245 weather stations. (d)
The computational memory approach classified 12 weather stations as uncorrelated that had been marked correlated by the k-means clustering
approach. Similarly, the computational memory approach classified 13 weather stations as correlated that had been marked uncorrelated by
the k-means clustering approach.

For the experiment using the weather data, another way to classify the processes based on their temporal correlation is via the
k-means clustering algorithm. Consider a set of observations (x1, x2, . . . , xn), where each observation xi 2 Rd, and a k-fold
partitioning of the same observations S = (S1, S2, . . . , Sn). Each individual partition Si is a set referred to as a cluster. The
optimal solution to the k-means clustering problem is given by the partitioning Ŝ that satisfies the following:

Ŝ = argmin
S

kX

i=1

X

x2Si

||x� µi||
2, (12)

where µi 2 Rd denotes the cluster mean (or centroid). While the k-means problem has been proved to be NP-hard2, heuristic
techniques such as Lloyd’s algorithm3 are often used to find approximate solutions. Lloyd’s algorithm begins by initializing each
cluster centroid by selecting one of the n observations uniformly at random. It then proceeds to pass through the n observations,
assigning each observation to the cluster that is closest in the sense of Euclidean distance from the observation vector to the
cluster centroid. At this end of this pass, each cluster centroid is updated by computing the mean of all of the observations that
were assigned to it in the preceding pass. This process is repeated for a fixed number of iterations, T , or until some convergence
criterion is met. As the algorithm can converge to a local optimum, it is common practice to perform a number of outer iterations
using different initial centroids to see whether a better solution can be obtained. The complexity of a single outer iteration of
Lloyd’s algorithm has complexity O(ndkT ). For structured data, one typically finds that the algorithm converges with relatively
few inner iterations. However, it has been shown that the algorithm can need T = 2⌦(

p
n) iterations in the worst case and thus

exhibits super-polynomial complexity4.
Here, we compare the k-means clustering approach with the computational memory approach. The k-means clustering algo-

rithm was used to cluster the weather stations into two groups based on their Euclidean distance in the RK space. The cluster
of the weather stations with lesser mean distance from each other was denoted the correlated group, and the other cluster was
denoted the uncorrelated group. Supplementary Figure 4(a) shows the map of the United States with the correlated weather
stations denoted in green and the uncorrelated ones in black.

The computational memory approach was also used to group the weather stations into a correlated and an uncorrelated group.
As described in the main text, we used 4 devices to interface with a single weather station. If the mean conductance value
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exceeds 2µS, then that weather station was considered to belong to the correlated group. The resulting map of the United States
with the correlated weather stations as detected by the computational memory approach is shown in Supplementary Figure 4(b).

Out of the 270 weather stations, there was agreement between the two approaches for 245 weather stations (Supplementary
Figure 4(c)). The computational memory approach classified 12 weather stations as uncorrelated that had been marked correlated
by the k-means clustering approach. Similarly, the computational memory approach classified 13 weather stations as correlated
that had been marked uncorrelated by the k-means clustering approach (Supplementary Figure 4(d)). Given the simplicity
of the computational memory approach, it is remarkable that it can achieve this level of similarity with such a sophisticated
classification algorithm. Also note that, given the difference between the two algorithms (covariance matrix-based and k-means
clustering), calculations show that the expectation was to get an agreement only for 251 weather stations. These experiments
also revealed the advantages of having multiple devices interfacing to a single random process. For example, if we had used
only one device per weather station, our accuracies would have been lower and the agreement with the k-means approach would
have been obtained only for 229 weather stations.
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SUPPLEMENTARY NOTE 5: A HYPOTHETICAL COMPUTATIONAL PHASE-CHANGE MEMORY UNIT
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Supplementary Figure 5. Schematic representation of the various building blocks. (a) Conventional PCM-based memory unit and (b)
hypothetical computational phase-change memory unit. BL stands for Bit Line and WL for Word Line.

Here we present some details as to how a hypothetical computational phase-change memory unit would look. In particular,
we would like to highlight the similarity of such a computational memory chip with a conventional PCM-based memory unit.
Supplementary Figure 5(a) presents a schematic representation of the various building blocks of the conventional memory unit.
The main constituents are a memory controller chip and a memory chip. The memory unit typically interfaces to a host via
a host interface. During the write operation, the controller may apply some type of encoding to the data before sending the
corresponding write commands to the memory based on the Input/Output (I/O) interface of the chip. During the read operation,
the data received from the memory chip is decoded and error correction may be performed before the data is passed to the
host. The memory chip comprises the I/O and command control circuitry, the I/O data buffers, the address-decoding circuitry,
the read/write circuitry and the memory array. During the write operation, the data is loaded to the input buffers and the write
circuity will be invoked to program the memory devices in parallel or sequentially. The devices can be addressed directly or in
an incremental fashion (Bit Lines and World Lines can be used to access an individual memory cell or a group of memory cells).
During the read operation, the memory cells are read in parallel or sequentially, and the digitized information is passed on to the
memory controller.

Supplementary Figure 5(b) presents a schematic representation of the various building blocks of a potential computational
memory unit. Here again, the main constituents are a memory controller chip and a memory chip, and the chip can interface to
a host via an appropriate host interface. For example, the event-based data streams arrive at the computational memory chip via
this interface. Based on this, the instantaneous collective momentum can be calculated in the controller. A digital bit sequence



8

that indicates the programming current or pulse width corresponding to the collective momentum is passed to the memory chip
along with the addressing information of the memory devices that need to be programmed. The bit sequence and addressing
information are formatted according to some encoding scheme determined by the memory chip interface. The devices that
need to be programmed will be programmed with the same programming conditions, whereas the devices that need not be
programmed can be indicated using a designated bit sequence.
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SUPPLEMENTARY NOTE 6: COMPARISON WITH IMPLEMENTATIONS WITH CPUS AND GPUS
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Supplementary Figure 6. Time required to compute the coefficients Wi for K = 104 for increasing number of processes N .

In this note we consider how one can efficiently compute the coefficients Wi using state-of-the-art CPU and GPU hardware
and how such implementations compare with the proposed approach that uses computational memory. For a set for binary
processes Xi(k), the coefficient Wi can be computed as follows:

Wi =
KX

k=1

Xi(k)
NX

j=1

Xj(k) =
KX

k=1

Xi(k)M(k) (13)

The samples from all N processes at a given time step k are stored contiguously in memory, and a single bit is used to represent
each sample Xi(k), thus the samples from 32 different processes are packed inside one 4-byte unsigned integer data type. The
total memory required to store the data at all K time steps is given by KN/8 bytes: for K = 104 and N = 106 this amounts to
around 1.2 GB of data. The CPU-based implementation begins by initializing the estimates Wi = 0, for i = 1, 2, . . . , N . The
implementation then proceeds to iterate over the time steps k = 1, 2, . . . ,K. At each time step, we first compute the collective
momentum M(k): a 4-byte floating point number resulting from the summation of all bits Xi(k) for i = 1, 2, . . . N . To perform
this addition operation, each bit Xi(k) must first be extracted from the corresponding unsigned integer data type, and cast to a
floating point number. Compiler flags were set to ensure that the additions are effectively vectorized, thus making full use of the
arithmetic resources provided by the CPU. Once the collective momentum has been computed, we then perform a second pass
through the processes, again casting each Xi(k) to a floating point number, multiplying by M(k), and adding the result to the
current value of Wi. In this manner, the coefficients Wi are effectively accumulated in memory.

To harness the multi-core architecture of modern CPUs, the computation defined in equation (13) can easily be divided up
amongst T threads. The time steps k = 1, 2, . . . ,K are divided into T equal groups, and each thread is responsible for computing
the part of the summation (13) corresponding to one of such groups. Once all threads have finished working, the partial results
are reduced to obtain the final value for the coefficients Wi.

In a similar manner, the computation can be mapped to GPU hardware by launching a kernel function consisting of K
thread blocks. Each thread block is responsible for the computation of a single summand in (13) and for the computation of
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every summand in (13) (i.e., one thread block for every time step). The GPU schedules the thread blocks for execution on
its streaming multi-processors as it sees fit. Each thread block computes the collective momentum M(k) in a multi-threaded
manner: each individual thread is responsible for only a part of the necessary summation over all processes, the partial results
are stored in shared memory, and finally the results are reduced to obtain the resulting value for M(k). The thread block then
proceeds to pass over the processes again, this time multiplying each sample Xi(k) by the momentum M(k) and then using an
atomic addition operation to accumulate the resulting values for Wi in the main memory of the GPU. It is possible to further
distribute the computation across multiple GPUs by partitioning the time steps k = 1, 2, . . . ,K into distinct groups, allowing
each GPU to compute a partial result for the Wi for the set of time steps assigned to it, and then collecting and reducing the
results from all GPUs at the end. As on the CPU, the binary data for the processes are packed into 4-byte unsigned integer data
types, and all arithmetic is performed using 4-byte floating point data types. Thus, as before, each bit Xi(k) must be unpacked
and cast to a floating point number before it is used arithmetically.

To quantify the time required for such a calculation using state-of-the-art computing hardware, we measured the performance
of various implementations that can be executed on an IBM* Power* System S822LC system. This system has 2 POWER8*
CPUs (each comprising 10 cores) and 4 Nvidia Tesla P100 GPUs (attached using the NVLink interface). We measured the
performance of a CPU-based implementation using only a single thread as well as of an implementation that uses 32 threads
spread across the 2 CPUs. We also studied the performance of an implementation that uses a single GPU, as well as one that
uses all 4 GPUs. The results are shown in Supplementary Figure 6 for K = 104 and increasing values of N . We observe linear
scaling with N in all cases and a significant improvement from using the multi-threaded and GPU-based implementations. For
instance, by using 4 GPUs, it was possible to compute all coefficients Wi for N = 107 processes in a single second.

To gain more insight into the computational complexity of the GPU-based correlation detector, in Supplementary Table 1 we
present a profiling of the computational kernel that was obtained using the nvprof tool provided by NVIDIA. We present data
for the experiment using a single P100 GPU and N = 107 processes with K = 104 time steps. We compare the resulting
profiles for the case where the computational kernel only computes the collective momentum, with the numbers obtained for the
full computational kernel as described above. Firstly, we note that while the kernel takes only 80 ms to compute the collective
momentum, it requires 3.9 s to perform the full calculation (i.e., only 2% of the execution time is spent computing the collective
momentum). Next, we note that when moving from the momentum-only kernel to the full kernel, most of the instruction counts
either stay relatively constant or increase by a factor of two. There are three noticeable exceptions: the full kernel requires 102
billion floating point multiplications (the momentum computation requires zero), 26 billion global load transactions (only 800
million were necessary for the momentum computation) and 204 billion L2 transactions related to atomic requests (again, no
atomic requests were necessary for the momentum computation). This huge increase in the number of L2 requests due to atomic
operations leads to saturation of the GPU device’s memory bandwidth and is thus the performance bottleneck for the kernel (this
is confirmed by running the bottleneck analysis provided by NVIDIA’s visual profiling tool).

To provide a point of comparison with the proposed approach that uses computational memory, we note that the time required
to compute Wi for N = 107 processes will be dominated either by the time required to write to the PCM cells, t1, or the time
required to compute the collective momentum M(k) on the memory controller, t2. As all PCM cells can be programmed in
parallel, the time spent writing to PCM is given by t1 = KtPCM where tPCM is the PCM write latency. Assuming a write latency
of 100 ns, we conclude that, for K = 104, the time spent writing to the PCM will be around 1 ms. Note that owing to the sparsity
of the processes, only a fraction of the N = 107 devices receive a SET pulse, and hence the devices could be programmed in
parallel. Even otherwise, it is possible to slightly offset the programming pulses in time without a significant penalty. The time
t2 is determined by how quickly one can count the number of ones in the binary sequence (X1(k), X2(k), . . . , XN (k)) on the
memory controller. Assuming that one implements this addition using a tree structure in either an FPGA or an ASIC device,
one can compute the collective momentum at a given time step in L = log2(N) clock cycles. Assuming a relatively low clock
frequency of 50 MHz, this would correspond to around 0.5µs per time step for N = 107, and thus the total time spent computing
the collective momentum for K = 104 steps would be approximately 5 ms. Hence, we conclude that the computation of the
coefficients Wi can be accelerated by approximately a factor of 200 (relative to the implementation using four P100 GPUs) by
using computational memory and an FPGA or ASIC-based memory controller.

We can also make a comparative study between the GPU implementation and computational memory with respect to energy to
solution. From Supplementary Table 1, we expect the energy to solution for the full kernel to be 148.2 J (The difference between
average power and idle power multiplied by the execution time). The energy consumed for just the momentum calculation is
1.68 J. The energy consumption associated with the computational memory unit is difficult to quantify given that we do not have
a complete system yet. However, we can make an estimate based on the existing devices and their energy consumption. The
energy consumed per device is approximately 580 pJ for one RESET operation and approximately 1.5 pJ for one SET operation.
Hence the total energy consumed in the devices for the experiment corresponding to Figure 5 in the manuscript is 58.7 mJ. If
we extrapolate this result for the number of processes being N = 107 and retaining the number of time instances as K = 104,
then the energy consumed is estimated to be approx. 587 mJ. These calculations are based on devices fabricated in the 90 nm
technology node. The RESET energy, which dominates the overall energy consumption, will reduce substantially if we consider
the state-of-the-art PCM devices fabricated in lower technology nodes. However, this estimate does not consider the overhead
associated with read/write circuitry, data converters, control and command circuitry etc. But, even if we assume a substantial
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Metric Momentum only Full kernel

Integer Instructions 128 B 272 B
Bit-Convert Instructions 102 B 205 B
Control-Flow Instructions 3.2 B 6.4 B
Floating Point Operations (Single Precision Add) 102 B 102 B
Floating Point Operations (Single Precision Mul) 0 102 B

Shared Load Transactions 100 k 110 k
Shared Store Transactions 60 k 60 k
Global Load Transactions 800 M 26 B

L2 Transactions (Texture Reads) 400 M 800 M
L2 Transactions (Atomic Requests) 0 204 B

L2 Throughput (Atomic Requests) 0 GB/s 788.27 GB/s

Kernel Execution Time 80 ms 3.9 s
Power (Idle) 35 W 35 W
Power (Avg.) 56 W 73 W

Supplementary Table 1. Profiling of the computational kernel for K = 104 and N = 107 on a single P100 GPU.

overhead, the energy consumed for just the momentum calculation is expected to dominate the overall energy consumption,
assuming that the momentum is computed using GPU. In this case, we expect an almost two orders of magnitude improvement
in the overall energy consumption. If the momentum computation is realized in an FPGA or ASIC-based controller as proposed
earlier, one may expect even more substantial improvements.
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SUPPLEMENTARY NOTE 7: EMULATION OF COMPUTATIONAL MEMORY IN CMOS

REG ck

M

M

Supplementary Figure 7. Emulation of the accumulation behavior using CMOS technology. One could emulate the accumulative
behavior of the PCM using adders and registers. However, such a device is volatile and has a much larger footprint.

One could make an argument for the design of an application-specific chip where the accumulative behavior of PCM is
emulated using complementary metal-oxide semiconductor (CMOS) technology using adders and registers (see Supplementary
Figure 7). The required resolution of the adder and register is log2(N ⇥ K). For 106 parallel processes and 4000 time steps,
32 bits are sufficient, but precision could be reduced to save area and power. Comparing at the same technology node, a digital
CMOS adder would be on the order of a few 100 transistors, which would require an area that is two orders of magnitude larger
than a PCM device with a single access transistor. The much smaller area of a PCM device than that of the CMOS equivalent
circuit allows a more than two orders of magnitude higher density on chip. This enables significantly larger problems to be
solved in a PCM chip without moving data between the PCM chip and external memory.

Furthermore, the non-volatility of PCM devices enables efficient low-power devices, in which the leakage of CMOS would
dominate the dynamic power because of the low utilization rate. We can exploit the enormous storage capacity and non-volatility
of PCM devices. The non-volatility makes them particularly attractive for very slow processes. Note that the comparison on
current PCM technology discounts the fact that the energy figures corresponding to the computational memory will improve
by orders of magnitude as we scale to smaller dimensions5 and faster programming speeds6. We do not foresee such a scaling
scenario for CMOS technology7.
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SUPPLEMENTARY NOTE 8: OTHER COMPUTATIONAL PRIMITIVES USING CRYSTALLIZATION DYNAMICS

Supplementary Figure 8. Applications beyond correlation detection. To multiply a matrix, A, with a vector, x, one PCM device is assigned
to each row of A. The elements of A and x are mapped to the pulse characteristics (duration and amplitude, respectively) of the programming
pulse. Owing to crystallization dynamics, the result gets stored as the conductance values of the devices.

Temporal correlation detection is one of the computational primitives realizable using crystallization dynamics. Here, we show
how we can exploit the crystallization dynamics to perform matrix-vector multiplications (Supplementary Figure 8). Matrix-
vector multiplications, such as the one where we would like to multiply a matrix, A, with a vector, x, to obtain the vector,
b, arise in a wide range of engineering and scientific applications. As shown in Supplementary Figure 8, one PCM device
is assigned to each row of matrix A. Crystallizing pulses of duration proportional to the elements of the row of the matrix
are then applied sequentially in time to the corresponding PCM device. The corresponding programming pulse amplitude
(programming current) is modulated in accordance with the elements of the vector, x. For example, the first pulse applied to the
PCM device corresponding to the first row of the matrix would have an amplitude proportional to x1 and a duration proportional
to A11. Because of the crystallization dynamics, the extent of crystallization and hence the conductance of the device will be
proportional to the magnitude of the corresponding element of vector b. The result of the calculation will be “imprinted” as
resistance or conductance value of the devices. This is yet another clear illustration of collocated computing and storage. Note
that such an approach could scale remarkably well as it would only need N devices for an N ⇥N matrix.
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SUPPLEMENTARY NOTE 9: COMPUTATIONAL MEMORY USING THE DYNAMICS OF STRUCTURAL RELAXATION IN
ADDITION TO CRYSTALLIZATION DYNAMICS

Supplementary Figure 9. Structural relaxation and its impact on electrical transport. (a) When an amorphous phase is formed by the
melt-quench process, the atomic configurations are frozen into an unstable glass state, which relaxes over time to a more stable “ideal” glass
state. This is known as structural relaxation and is well captured by a collective relaxation model11. (b) Experimental data shows that at
constant temperature, the structural relaxation manifests itself as a linear increase in the threshold switching voltage, Vth, with the log of time.

Phase-change devices exhibit a rich dynamic behavior captured by a feedback interconnection of electrical, thermal and struc-
tural dynamics. Besides the crystallization dynamics, we can also exploit other types of dynamics for computational memory.
One such dynamic behavior is structural relaxation. When an amorphous phase is formed by the melt-quench process, the atoms
are frozen into an unstable glass state (Supplementary Figure 9(a)). Subsequently, these atomic configurations relax over time
to a more stable “ideal” glass state8. The exact nature of this structural relaxation and the nature of the “ideal” glass state are
being actively researched9,10. We recently showed that the dynamics of structural relaxation can be modelled accurately via a
collective relaxation model11. The amorphous structure collectively rearranges, whereby every local configuration is changed
repeatedly to achieve an overall lower energy state. The relaxation proceeds in a sequence of transitions between neighboring
states. The closer to the equilibrium the systems is, the higher is the barrier for subsequent relaxation. If ⌃(t) 2 [0 1] denotes
an order parameter that indicates the distance of the amorphous state from the ideal glass state at any point in time, t, then ⌃(t)
evolves according to

d⌃(t)

dt
= �e

⇣
� Es

kBT (t)

⌘

e

⇣
⌃(t)Es
kBT (t)

⌘

. (14)

It can be shown that at constant temperature, ⌃(t) varies linearly with the log of time.
Experimental measurements such as the one shown in Supplementary Figure 9(b) indicate that the threshold-switching field

depends on ⌃(t) as given by

Eth(t) = E0
th + �(1� ⌃(t)). (15)

Hence the threshold switching voltage evolves according to

Vth(t) = Eth(t)ua. (16)

Therefore, when programming a PCM device, the applied voltage, V , has to be greater than Vth(t) to pass sufficient current
through the PCM device and to induce crystallization. This means that the temperature at the amorphous–crystalline interface,
Tint, is given by

Tint = Rth(ua)
V 2

RON
+ Tamb, if V > Vth(t) (17)

= Tamb If V  Vth(t), (18)

where RON is the high-field ON resistance of the PCM device (largely independent of the amorphous thickness). When the
applied voltage, V , is lower than Vth(t), there is no significant Joule heating possible and Tint will remain close to Tamb. So if we
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Supplementary Figure 10. Influence of structural dynamics on the accumulation behavior. Experimental data showing the dependence
of the number of pulses to crystallize on the pulse period. The number of pulses required to reach a threshold conductance level is obtained
as a function of the pulse period. When the crystallizing pulse amplitude is large compared with Vth(t) (e.g., 1.4 V), the number of pulses
to crystallize is mostly independent of the pulse period. But when the crystallizing pulses have amplitudes comparable to Vth(t), there is a
significant dependence on the pulse period. For example when the crystallizing pulse amplitude is 1.25 V, if the pulse period is greater than
105 ns, then it is not possible to fully crystallize the phase-change material.

want to exploit the dynamics of structural relaxation in addition to the crystallization dynamics, the key idea is to operate with
programming voltages close to Vth(t).

An experimental demonstration of this concept is presented in Supplementary Figure 10. Crystallizing pulses of 50 ns duration
are applied to a phase-change device. The number of pulses required to reach a threshold conductance level is obtained. This
experiment is repeated by increasing the period of the pulse sequence (or decreasing the time duration between two consecutive
pulses). If the voltage of the crystallizing pulse is sufficiently large compared with the threshold switching voltage (e.g., V =
1.4 V), then the number of pulses required for crystallization is almost independent of the pulse period. However, it can be
seen that as V becomes smaller, there will be a strong dependence on the pulse period. A larger weighting period between
the consecutive application of two pulses could result in substantial structural relaxation such that the applied voltage becomes
smaller than the threshold switching voltage. This behavior arising from the dynamics of structural relaxation can be used to
discriminate between high-rate and low-rate input processes, such as in rate-coded processes, in addition to the ability to detect
temporal correlations.

*IBM, Power, and POWER8 are trademarks of the of International Business Machines Corporation, registered in many jurisdic-
tions worldwide. Other product or service names may be trademarks or service marks of IBM or other companies.
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