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Phase-change memory devices are expected to play a key role in future computing systems as both memory and com-
puting elements. A key challenge in this respect is the temporal evolution of the resistance levels commonly referred to
as “resistance drift”. In this paper, we present a comprehensive description of resistance drift as a result of spontaneous
structural relaxation of the amorphous phase-change material towards an energetically more favorable ideal glass state.
Molecular dynamics simulations provide insights into the microscopic origin of the structural relaxation. Based on
those insights, a collective relaxation model is proposed to capture the kinetics of structural relaxation. By linking the
physical material parameters governing electrical transport to such a description of structural relaxation, we obtain an
integrated drift model that is able to predict the current-voltage characteristics at any instance in time even during non-
trivial temperature treatments. We demonstrate accurate quantitative matching with experimental drift measurements
over a wide range of time (10 decades) and temperature (160 - 420 K).

I. INTRODUCTION

Phase-change memory (PCM) is arguably the most advanced resistive memory technology1,2. A PCM device consists of
nanometric volumes of phase-change materials such as Ge2Sb2Te5

3,4. The phase-change material can be rapidly and reversibly
switched between the amorphous and crystalline states, leading to a significant change in its electrical properties. The resistivity
of the two phases differs by orders of magnitude, opening the possibility to use the device to store information. It is also possible
to achieve a continuum of resistance levels by varying the ratio of crystalline/amorphous fractions. This enables multi-bit storage,
allowing the increase of the memory capacity of a single PCM device5,6. This near-analog storage capability is also appealing
for emerging applications in non-von Neumann computing such as computational memory7–11. It also facilitates applications
in brain-inspired neuromorphic computing where PCM devices are used to emulate synaptic and neuronal behavior12–14. A
key challenge in all these application domains is the temporal evolution of resistance levels commonly referred to as resistance
drift15. These resistance variations are caused mostly by the phase-change material in the amorphous phase. At constant ambient
temperature, the resistance typically exhibits a temporal dependence characterized by

R(t) = R(t0)(t/t0)νR , or equivalently log(R(t)/R(t0)) = νR log(t/t0) (1)

where R(t0) is the resistance measured at time t0 and νR is the so-called drift exponent. There is wide consensus that resistance
drift is caused by the spontaneous structural relaxation of the amorphous phase-change material16–19. In a PCM device, to
induce the crystalline-amorphous phase transition, the phase-change material is melted and rapidly quenched. This creates a
low-ordered highly-stressed amorphous state. Over time, this amorphous state evolves towards an energetically more favorable
“ideal glass” state.

In this article, we present a comprehensive description of resistance drift based on a review and integration of several recent
findings that have been published over the last few years20–23. This manuscript aims at integrating all the relevant data and
modeling efforts that were previously published in a unified manner, and includes significant additional explanations, discus-
sions, and context to the research that was performed. We start with a peak into the microscopic origins of structural relaxation
by reviewing recent insights from first-principles calculations. Next, we present a collective relaxation model that captures the
kinetics of this structural relaxation. It is shown that such a model naturally gives rise to the characteristic logarithmic evolution
in time. By linking material parameters governing the electrical transport to such relaxation, we can consistently capture the
evolution of the current-voltage (I–V) behavior of PCM devices over time and temperature.

II. MICROSCOPIC ORIGIN OF STRUCTURAL RELAXATION

Recent first-principles calculations by Raty et al.25, Gabardi et al.26, and Zipoli et al.22 on the prototypical phase-change
material GeTe provide significant insights into the microscopic picture of structural relaxation and nature of the “ideal glass”. To
identify the structural roots of resistance drift, the structures responsible for localized states in the band gap for melt-quenched
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FIG. 1. Structural relaxation in amorphous GeTe a Examples of structures with Ge atoms having a bond configuration different from the
ideal chemically ordered three-fold one are illustrated within the red contour. Such structures are responsible for localized electronic states
in the band gap. Recent studies show that resistance drift is mostly caused by a gradual transition of these structures formed during the melt-
quench process towards lower energy structures having more ideal configurations. The green box shows an example of an amorphous region
consisting of Ge atoms with three-fold bond configurations. Ge and Te atoms are depicted as dark yellow and violet spheres, respectively.
Bonds between these atoms, determined using Wannier analysis22,24 are indicated by cylinders and the surrounding bond network via thin
lines. b The link between distribution of bond configurations and conductivity is shown here. Each histogram shows the distribution of bond
configurations of all the Ge-Te bonds characterized by bond polarization and bond distance. Sixty-five structures obtained via classical MD
simulations and analyzed via first-principles calculations are grouped into five sets ranging from high conductivity (GR.1) to low conductivity
(GR.5), see Ref. 22 for more details. The number of bonds in each bin normalized by the number of configurations of the group is indicated by
the color scale. Amorphous states with a higher conductivity show a broader distribution. Upon relaxation, i.e. with decreasing conductivity,
the distribution of Ge-Te bonds becomes sharper and outliers disappear. c The energy profile associated with the annealing of a defective
Ge-Te structure is shown. The starting condition (Panel A) produces an electronic state in the band gap. In the final state (Panel B), i.e. after
the annealing, the defective configurations causing the localized electronic state are removed. Red arrows indicate the Ge atoms with defective
configurations. Green arrows indicate Ge atoms with an ideal three-fold bond configuration. The minimum energy pathway at T = 0 K (Panel
C) shows that the process occurs via a complex sequence of activated processes characterized by a changing collective activation energy.
Adapted from Ref. 22.

amorphous GeTe were carefully analyzed. It was found that they consist of groups of Ge atoms close to each other in which
the coordination of at least one Ge atom differs from a threefold coordination with only Te atoms as nearest neighbors as shown
in Figure 1a22,27. Resistance drift is associated with a transition of these structural defects into lower-energy structures having
a chemically ordered three-fold bonding topology and to a removal of stretched bonds in the amorphous network. The role of
stretched and compressed bonds is further analyzed in Figure 1b by plotting the correlation between conductivity and distribution
of Ge-Te bond lengths. The histograms of normalized bond polarizations and bond distances show that an increase of resistance
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is linked to the topology of a-GeTe tending towards less stretched and compressed Ge-Te bonds with a distance of approximately
2.8 Å and bond polarization of 0.35 (moving from conductivity groups GR.1 to GR.5). Structures with more bonds deviating
significantly from this configuration especially with respect to the bond polarization were found to be more conductive.

Figure 1c illustrates the energy profile associated with the reactive pathways to relax a group of three Ge atoms, two of
which with coordination differing from the chemically ordered three-fold bonding topology. The plot of energy versus reaction
coordinate shows that the annihilation of this defect results in a lower energy configuration with all three Ge atoms having
the ideal bonding configuration. The electron state localized in the band gap associated with this defect is not present in the
final configuration anymore. Unfortunately, due to the poor statistics, it is not possible to derive a distribution of activation
energy barriers from those simulations. The energy profile in Figure 1c illustrates that a variety of activation energy barriers are
overcome in the process of structural relaxation of amorphous GeTe.

Although the studies described in Refs. 22, 25, and 26 have some differences, they seem to agree that drift in amorphous GeTe
manifests in the annihilation of defects comprising groups of Ge atoms in which the coordination of at least one Ge atom differs
from that of the ideal three-fold bonding configuration. An increase in resistance is correlated with the annihilation of these
defects accompanied by a slow evolution of the bond network towards more ideal bonding configurations. While the change
in electronic band structure due to relaxation is still under debate22,25,28, it is commonly accepted that the resistance increase
results from an increase of the activation energy for conduction upon relaxation.

III. KINETICS OF STRUCTURAL RELAXATION: CURRENT UNDERSTANDING AND SHORTCOMINGS

The kinetics of structural relaxation in phase-change materials are to-date mostly described by a two-state model for the
relaxation of defects29,30. This is based on the popular relaxation model proposed by Gibbs31. The essential idea is that there
are structural defects that can be removed by relaxation. Different activation energies are required to remove different defects
assuming that the removal of one defect can be associated with a single activation energy. As the relaxation proceeds, defects
with lower activation energy will be removed first, followed by those with higher activation energy. The distribution of activation
energies for the relaxation of defects serves as the parameter that tracks the state of relaxation of the material at any instance in
time.

If we denote q(E) the distribution of activation energies for relaxation, mono-molecular32 relaxation can be described by

dq(E)
dt

=−ν(E)q(E) (2)

where the relaxation rate ν(E) has an Arrhenius-type temperature dependence with activation energy E

ν(E) = ν0 exp(−E/kBT ).

ν0 is the attempt to relax frequency on the order of typical phonon frequencies, kB is the Boltzmann constant and T is the
temperature.

Following (2), the structural defects with low activation energies relax first. Thus, over time relaxation becomes gradually
more difficult as the number of unrelaxed defects decreases and the average activation energy of the remaining structural defects
increases. The mathematical problem therefore comes down to counting the number of structural defects that remain to relax in
order to describe the state of relaxation of the system.

Integration over Eq. (2) yields ∫ q(E,t)

q0(E)

dq
q

=−
∫ t

0
ν0 exp

(
− E

kBT

)
dτ,

and can be solved analytically for constant temperature

q(E, t) = q0(E)exp(−tν0 exp(−E/kBT )).

For t > 1/ν0 the term exp(−tν0 exp(−E/kBT )) can be approximated by a step function θ(E−E0) with E0 = kBT log(ν0t).
Finally, the number of remaining unrelaxed structural defects can be derived by integrating over all activation energies that

have not undergone relaxation until time t. Assuming that q0(E) is uniformly distributed from 0 to an energy Emax, for 0 < E0 <
Emax a log(t) dependence emerges

q(t) =
∫

q(E, t)dE ≈
∫ Emax

E0

1
Emax

dE = 1− kBT
Emax

log(ν0t). (3)

Even though this model is quite appealing, it has a few drawbacks. To quantitatively capture the commonly measured log(t)
drift behavior in phase-change materials, it is necessary to have a flat distribution of activation energies29 as indicated by Eq.
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(3). Since the log(t) kinetics have been observed over a wide range of time (from ∼ 100 ns33 up to months) and temperature,
the energy range over which q0(E) is uniform would need to be quite large (presumably > 0.8 eV, assuming a drift timescale
of 10−7 s to 107 s at room temperature). Given the universality of the drift behavior in phase-change materials, this strict
requirement on the energetic distribution irrespective of the material used seems unnatural. A further concern is that in this
picture, the defects that have undergone relaxation once, no longer participate in subsequent structural relaxation processes.
Finally, this picture also does not account for the fact that a local rearrangement inherently influences also the surroundings,
which will more or less subtly rearrange as well.

The molecular dynamics simulations described in Section II have shed light onto the relaxation of the complex structures with
defective local coordination present in amorphous phase-change materials. As shown in Figure 1c, it is observed that relaxation
leading to the annihilation of a particular defective structural complex occurs via a series of collective rearrangements, whereby
individual local configurations are changed many times. Hence, an overall lower energy state is achieved through the repeated
involvement of many atoms rather than by a very local defect relaxing once and not changing afterwards again. In contrast,
Gibbs approach assumes that the removal of one defect is associated with a single activation energy, and it is the distribution of
activation energies associated to the spectrum of defects that determines the state of relaxation of the material. The collective
relaxation model presented in the next section provides an alternative to the Gibbs approach without the drawbacks mentioned
above.

IV. COLLECTIVE RELAXATION MODEL

Most approaches to describe the evolution of a macroscopic property that is logarithmic in time, including the defect relaxation
model by Gibbs et al.31, argue with the microscopic inhomogeneity in the relaxing material to justify the very specific distribution
of activation energies of the relaxation processes that is necessary to yield the log-law. Already in 1948, Kuhlmann commented
that this seems rather forced as so many different materials show the very same relaxation behavior34. Kuhlmann argued instead,
that the empirical log-law x = kBT

A log(Bt) for a property x changing with time t would arise naturally without any further
assumptions if structural relaxation occurs via a large number of statistical processes with an activation energy that depends
linearly on the relaxing property as described by

dx
dt

=
kBT

A
exp
(
− Ax

kBT

)
B.

This argument is not only mathematically simple but also seems to be naturally built into any glass-system. A glass is formed
when it is cooled down from the melt faster than it can sample all possible structural configurations in the energy-landscape. At
this point, it forms a non-equilibrium structure that naturally has built-in stresses. As the glass is globally relaxing towards its
ideal state, those stresses relax through localized reconfigurations and the local configurations become more stabilized. A group
of atoms neighboring a region that previously relaxed needs for their own relaxation to partially involve those stabilized atoms
from that already relaxed region. Hence, for this subsequent relaxation a higher activation energy must be overcome.

The collective relaxation model based on this physical picture is motivated by a similar relaxation problem encountered in the
study of indents created in a polymer film using a heated atomic force microscopy probe35. The essential idea is that the atomic
configurations that are frozen in during the glass transition relax collectively towards the more energetically favorable “ideal
glass” state. The relaxation proceeds in a sequence of transitions between neighboring unrelaxed amorphous states. The driving
force for such a relaxation is the difference between the local energy minima of two neighboring states, denoted ∆b. The closer
to equilibrium the system is, the lower will be the driving force and the higher the energy barrier for subsequent relaxation (see
Figure 2). The rates of the relaxation events in the direction towards equilibrium n− and in the opposite direction n+ are then
given by

n− = ν0 exp
(
− Eb

kBT

)
n+ = ν0 exp

(
−Eb +∆b

kBT

)
where ν0 is an attempt-to-relax frequency and Eb is the energy barrier for subsequent relaxation events. We denote by Σ the
distance of the unrelaxed state from the “ideal glass” state. Σ takes values between 0 and 1, with 1 denoting the fully unrelaxed
state and 0 the “ideal glass” state21,23. If each relaxation event changes Σ by an amount ∆Σ, the evolution of Σ is then given by

dΣ

dt
= ∆Σ(n+−n−).

The amorphous state is assumed to be created with an initial distance Σ(0) = Σ0 from equilibrium. After each relaxation event,
the system reaches structures lower in energy as stress is relaxed and the driving force ∆b reduces. Therefore, the activation
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FIG. 2. Sketch of the collective relaxation model The amorphous state created via the melt-quench process is in an unstable state and
proceeds through a sequence of transitions towards the energetically more favorable “ideal glass” state. The activation energy Eb(t) for
collective reconfigurations grows as they involve the movement of atoms that have been increasingly stabilized in their positions through
previous relaxation steps.

energy Eb for relaxation events increases monotonically upon approaching equilibrium until it reaches its highest value Es when
Σ→ 0. When the system approaches equilibrium and Σ→ 0, we expect that ∆b should be proportional to Σ in accordance
with a linear response for small deviations from equilibrium35. Once equilibrium is reached, the driving force ∆b equals 0 and
n+ = n− = e(−Es/kBT ). Eb is assumed to depend linearly on Σ, which is the only requirement to get the log-law at constant
temperature as shown above

Eb(t) = Es(1−Σ(t)). (4)

If we assume that the system is far from equilibrium, we have exp(− ∆b
kBT )� 1 and the evolution of Σ as function of time and

temperature is then given by

dΣ(t)
dt

=−ν0∆Σ exp
(
− Es

kBT (t)

)
exp
(

Σ(t)Es

kBT (t)

)
. (5)

The only requirement on ∆b is that it decreases monotonically upon approaching equilibrium, and Eq. (5) is valid as long as
∆b� kBT for all temperatures at which relaxation is described. For example, to describe relaxation up to 420 K, the condition
∆b > 70 meV needs to be fulfilled (assuming 1/e2� 1).

At constant temperature, this equation can be solved analytically and the resulting evolution of Σ is given by

Σ(t) =−kBT
Es

log
(

t + τ0

τ1

)
, (6)

where τ1 = (kBT/ν0∆ΣEs)e(Es/kBT ) and τ0 = τ1e(−Σ0Es/kBT ).36 τ0 can be interpreted as an incubation time at which the transition
to the logarithmic decay occurs, and τ1 is the time at which equilibrium is reached (Σ→ 0). When τ0� t� τ1, Σ(t) exhibits a
linear dependence on log(t). The relaxation is thus predicted to follow a logarithmic law as a function of the annealing time.

V. ELECTRICAL TRANSPORT MODEL

In order to link the structural relaxation described above to electrical observables such as the low-field resistance or more gen-
erally the I–V characteristics of a PCM device, a thorough physics-based description of the electrical transport of the amorphous
state is needed. For this, we use a previously developed field- and temperature-dependent model of the electrical conductivity20.
The model is illustrated schematically in Figure 3. In this multiple-trapping model, the conductivity is calculated based on the
transport of charge carriers whose release from their localized states is facilitated by the applied electric field, the Coulombic
interactions with neighboring defect centers and temperature.

The activation energy for carrier emission Ea decreases by an amount EPF upon the application of an electric field F (Poole–
Frenkel effect)37–41. The potential Φ is used to model the interactions between two neighboring defect centers:

Φ(r,θ ,F) =−eFr cos(θ)− β 2

4e

(
1
r
+

1
s− r

)
+

β 2

es
.

Here, β is the Poole–Frenkel constant, e the electronic charge, θ the direction of escape relative to the direction of the electric
field and s the distance between the two defect centers, which we denote as intertrap distance. The energy barrier lowering EPF
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FIG. 3. Electrical transport model The field dependence of the free carrier density is described by 3D Poole–Frenkel emission from a
two-center Coulomb potential Φ. The applied field F reduces the potential barrier in the direction θ = 0 and increases it along θ = π .

due to the Poole–Frenkel effect is calculated for all F and θ by identifying the maximum of this potential over r. Furthermore,
the activation energy Ea is assumed to vary with temperature according to

Ea = Ea0−ξ T 2

with ξ = 0.5×10−6 eVK−2. Such a temperature dependence is inspired by the temperature dependence observed for the optical
bandgap of amorphous phase-change materials28,42,43. The free carrier density n is then calculated by summing the emission
contributions over all directions of escape θ :

n(F) =
K
4π

∫
π

0
exp
(
−Ea−EPF(F,θ)

kBT

)
2π sin(θ)dθ .

Finally, the field-dependent electrical conductivity σ(F) is calculated as

σ(F) = eµn(F)

where µ is the free carrier mobility.
This transport model is capable of describing three regimes of electrical transport observed in amorphous phase-change

materials, namely, the ohmic behavior at very low fields, the Poole-type behavior at low to moderate fields and the Poole–Frenkel-
type transport at moderate fields. The model was shown to capture the electrical transport in many devices of different dimensions
and phase-change materials over a wide temperature range (180 K - 300 K)20,44. Even threshold switching in nanoscale PCM
devices could be described reasonably well with a simulation solely based on the combination of this subthreshold conduction
model with thermal feedback from Joule heating45, i.e. no additional dependence at high-fields44 had to be invoked.

VI. LINK BETWEEN ELECTRICAL TRANSPORT AND STRUCTURAL RELAXATION

In sections IV and V, we derived individual descriptions for structural relaxation using the order parameter Σ(t) and electrical
transport σ(Ea0,s). In order to find a general quantitative description of resistance drift as a function of temperature and time,
we therefore have to establish the link between electrical transport and structural relaxation. Assuming that only Ea0 and s
may potentially vary upon drift17,20, we therefore need to obtain the functions Ea0(Σ(t)) and s(Σ(t)). The collective relaxation
model leads to a logarithmic law as a function of time at constant temperature. Therefore, we experimentally measured the
electrical transport I–V characteristics of PCM cells in the RESET (amorphous) state for different annealing times (1000 s and
15 h) at different constant annealing temperatures (250 K, 300 K, 350 K, 400 K). This way we created a highly constrained set
of data to experimentally obtain the two quantities Ea0 and s while all other parameters were held constant. The experiments
were conducted on mushroom-type PCM cells fabricated in the 90-nm technology node with doped Ge2Sb2Te5 phase-change
material (see the experimental section).

The resulting experimental resistance vs. voltage curves corresponding to three such annealing experiments are shown in
Figure 4a-c. It can be seen that the low-field resistance increases with both annealing time and annealing temperature, as it is
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FIG. 4. Link between electrical transport and structural relaxation a-c, Experimental resistance vs. voltage curves of RESET state
measured from 300 K down to 180 K after annealing. Three annealing conditions are shown, exhibiting higher low-field resistance and stronger
voltage dependence for both increasing annealing time and temperature. Fits of the temperature dependent I–V characteristics underlying the
data in a-c using the electrical transport model described in section V (black lines) result in activation energy Ea0 (d) and intertrap distance s
(e) for different annealing times and temperatures. f, Ea0 and 1/s plotted as function of kBTann log(Γtann/kBTann), where Tann is the annealing
temperature and tann the annealing time.

typically observed in resistance drift measurements on PCM devices17,21,42. It can also be seen that the voltage dependence of
the resistance becomes stronger upon annealing.

Figure 4d and 4e show the values of Ea0 and s obtained by collectively fitting the resistance vs. voltage curves obtained
for each annealing experiment to the electrical transport model introduced in Section V. The activation energy is found to
increase linearly with annealing temperature, in agreement with previous experimental measurements46. The observed increase
of the activation energy upon annealing is consistent with the widening of the optical bandgap seen in amorphous phase-change
materials upon annealing43. The increase of s upon annealing can be interpreted as being due to the annealing of defects in the
bandgap, which presumably are responsible for the Poole–Frenkel-type transport17,47.

According to the collective relaxation model of Section IV, in particular Eq. (6), all experimental data for different annealing
times tann and temperatures Tann should fall on a single curve when plotted as a function of kBTann log(Γtann/kBTann) for a unique
value of Γ = Esν0∆Σ.48 This quantity with the dimension of an energy can represent both the effect of longer annealing and of
annealing at different temperatures. The good alignment of the data observed in Figure 4f for Γ = 2.3×1013 eVs−1 convincingly
shows that time-temperature superposition holds for both Ea0 and s in the experimental range of conditions studied. Time-
temperature superposition should be expected if the observed changes in Ea0 and s indeed arise from structural relaxation49.

With the annealing kinetics of the PCM cells being well established, Ea0 and s can now be linked to the order parameter Σ.
At constant temperature, for τ0� t � τ1, Σ is a linear function of kBT log(Γt/kBT ) (see Eq. (6)). Therefore, the experimental
results of Figure 4f suggest a linear dependence of Ea0 and 1/s with Σ, leading to the following relationships:

Ea0(t) = E∗−αΣ(t) (7)
s(t) = s0/Σ(t). (8)

Here, E∗ is the activation energy at equilibrium (Σ = 0), α is a constant that links a change in Σ(t) to a change in Ea0(t) and s0
is a constant that links a change in Σ(t) to a change in s(t).

The results from the overall drift model are plotted in Figure 5 along with the experimental data of Figure 4. The solid lines in
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FIG. 5. Illustration of the drift model Both Ea0 and 1/s are assumed to vary linearly with the order parameter Σ to constitute the drift model.
Those relationships are plotted in a and b for different ambient temperatures along with the experimental data points of Figure 4.

Figure 5 represent fits to the data, where Σ0 = 0.950 and ν0∆Σ = 1013 s−1 were fixed, and Es, E∗, α and s0 were taken as global
fit parameters. Good agreement with the data was obtained using Es = 2.3 eV, E∗ = 0.415 eV, α = 0.276 eV and s0 = 1.39 nm.
At room temperature, the model yields the logarithmic law from 100 ns (shortest time at which drift has been experimentally
observed in PCM cells33) up to 10 years (expected retention time of a PCM cell in the RESET state at room temperature51).

VII. MODEL VALIDATION

In Section VI, it was shown that collective structural relaxation and field-dependent multiple-trapping electrical transport can
be convincingly linked to describe drift of the whole I–V characteristics of our PCM cells in the amorphous state. In this section,
we want to verify that the model can describe typical experimental resistance drift data collected over an extended range of
temperatures and shorter time scales than those previously used to build the model in Section VI. Moreover, we investigate
whether the model can also capture drift resulting from the application of a time-dependent temperature profile T (t), using the
differential equation (5) to describe the relaxation. Finally, we also investigate how the model can be used to predict the evolution
of the resistance distributions of an array of 4k PCM cells.

A. Constant temperature drift

First, constant-temperature low-field resistance drift experiments were conducted over a wide range of temperatures. The
PCM cell is programmed to a constant amorphous size at various ambient temperatures (using a technique described in Ref. 51),
and the evolution of the low-field resistance R is monitored. The low-field resistance is measured by applying a constant voltage
of 0.2 V to the PCM cell. This experiment is conducted from 160 K to 420 K in steps of 20 K. The lower temperature limit is
chosen to ensure that the electrical transport does not deviate from the multiple-trapping transport model28 of Section V and
the higher limit to prevent unwanted crystallization. As shown in Figure 6a, the experimental data is well captured by the drift
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FIG. 6. Constant temperature drift experiments a, Low-field resistance drift measured at various temperatures from 160 K to 420 K in steps
of 20 K after the PCM cell has been programmed to a constant amorphous size. b, High-field resistance drift measured at 300 K, 350 K and
400 K over 10 decades of elapsed time after RESET. The high-field resistance was defined as the resistance of the PCM cell at a fixed current
of 1 µA. The inset shows a typical trace of the pulse used to measure the high-field resistance.

model over the whole range of temperatures. The slope of log(R) vs log(t) is temperature independent in the experimentally
accessible range of time, as commonly observed in resistance drift measurements of phase-change materials46,52. This behavior
is also predicted by the model because of the linear dependence of Ea0 on Σ (Eq. (7)). This slope gives the value of the drift
exponent νR, which can be simply calculated from the model as νR = α/Es and amounts to νR = 0.12 with the parameter values
of Section VI.

To test the model on shorter time scales, we performed fast measurements of the high-field resistance starting at 1 µs after
RESET over 10 decades in time at temperatures of 300 K, 350 K and 400 K. The high-field resistance is defined as the resistance
of the PCM cell at a fixed current of 1 µA (see inset). Defining the high-field resistance in this way allowed us to resolve it
accurately with our measurement setup over the entire range of time investigated. The results are shown in Figure 6b, and
remarkable agreement between model and experiment is obtained over the entire time and temperature range. Note that such a
prediction would not be possible without knowing how the I–V characteristics at high field evolve, because the READ current
of 1 µA is beyond the low-field ohmic region of the I–V curve (see inset).

B. Variable temperature drift

The ultimate test case for the model is a measurement of the full I–V characteristics of a PCM cell during the application of
a time-varying temperature profile. In this case, reversible as well as irreversible effects of temperature on electrical transport
need to be tracked correctly upon drift, because structural relaxation is accelerated at higher temperatures. The time-temperature
profile shown in Figure 7a is applied to the PCM cell after RESET, and the I–V curves are continuously monitored over time. The
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evolution of the low-field resistance R, which corresponds to the ohmic region of the I–V characteristic, is accurately reproduced
by the model (Figure 7b). Moreover, the I–V curves over the entire voltage range used are accurately predicted by the drift
model for the full duration of the experiment (see Figure 7c). Note in particular the clear increase of the log(I) vs V slope after
annealing, which is a signature of the increase of s. This increase of s results in a transition from Poole type towards Poole–
Frenkel type electrical transport at lower fields, as previously reported on PCM cells that undergo high temperature annealing17.

C. Array-level drift

Drift variability of PCM devices across an array is arguably the most important problem for multi-level information storage
with PCM. Drift variability can cause overlap of the resistance levels used to store the information over time across multiple
cells. While techniques such as adaptive detection thresholds can be used to compensate for a global drift effect to reliably detect
the stored levels53, the fact that all cells across an array drift with a different (randomly distributed) exponent νR can cause the
stored resistance distributions to overlap over time. Therefore, it is of interest to verify if the proposed model can capture the
common features observed when monitoring the evolution of the resistance distributions across an array. The evolution of the
high-field resistance distributions over time and temperature was measured for an array of 4000 devices in the RESET state. A
prototype PCM chip that contains the addressing, readout, and programming circuitry was used for these measurements54. The
cells were programmed to the RESET state using an iterative procedure55 to ensure that all cells have approximately the same
initial resistance. After programming, the temperature profile shown in Figure 8a was applied to the chip and the high-field
resistance of the 4000 cells was continuously monitored over time, using a constant read voltage of 0.62 V.

The drift model was used to simulate the evolution of the high-field resistance on 1000 devices. In the simulation, the
amorphous thickness (ua) and drift parameters (α and s0) were drawn from normal distributions with standard deviation of 5%
of the mean values. This way, variability in the initial programmed state is taken into account while the model is used to capture
the subsequent evolution of the I–V characteristics of each device with time and temperature. This variability in the initial
programmed state is expected to result from both intra- and inter-cell variability. Intra-cell variability is expected because both
the thickness of the amorphous region and its internal atomic configuration are never the same after each RESET process.56

The atoms in the molten state are highly mobile, ensuring that at every RESET a new glass state is formed and this will lead to
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FIG. 8. Array-level drift experiment High-field resistance measurements (0.62 V read voltage) were conducted on 4000 devices in the
RESET state undergoing changes in the ambient temperature. The drift model was used to simulate the evolution of the high-field resistance
on 1000 devices. In the simulation, normal distribution of drift variability and programmed state variability with 5% standard deviation were
assumed. a, Temperature profile applied to the PCM chip. b, Experimental and simulated evolution of the median resistance. c, Experimental
(dash lines) and simulated (plain lines) cumulative resistance distributions at four instances in time. d, Experimental (bars) and simulated
(plain lines) resistance histograms before and after annealing.

variability in both ua and drift. Inter-cell variability, on the other hand, arises predominantly from variability associated with the
fabrication process across the array. The distributions simulated this way match very well the experimental distributions of the
4000 devices for the entire experiment, see Figure 8. The model can accurately capture key features57, such as drift acceleration
with increasing temperature, shift of the median values due to temperature changes, and broadening of the distributions upon
drift (see Figure 8d). The broadening observed after annealing arises because the activation energy and intertrap distance of
individual devices relax at slightly different speeds.

VIII. DISCUSSION

Our theoretical as well as experimental results consistently advocate that structural relaxation in phase-change materials is of
collective, repetitive nature. We describe such kinetics using a single characteristic activation energy for relaxation that varies
with time (Eq. (4)), rather than a distribution of activation energies that gets eroded as in previous works30. Our approach
naturally gives rise to a logarithmic evolution of the relaxation without the need to assume a wide and flat activation energy
spectrum for the relaxation of defects. The collective relaxation model quantifies elegantly the insights from molecular dynamic
simulations27 which indicate that annealing of defective structures occurs via a sequence of activated processes overcoming a
changing activation energy. The activation energy for relaxation in Eq. (4) is thus characteristic of a larger ensemble of atoms
and not of a single structural defect.

Our experimental data shows that the relaxation in PCM follows the logarithmic law over an extremely wide range of time
and temperatures. Hence, describing such kinetics with the Gibbs model based on a distribution of activation energies would
require a uniform relaxation energy spectrum spanning more than 15 orders of magnitude in time (see Supplementary Note I),
or equivalently several eVs of energy (at least 2 eV58). Such a uniformly fine-tuned spectrum over a wide range of time/energy
does not appear to be the most physically plausible choice for relaxation in an amorphous material. Such relaxation also cannot
be captured by merely using a stretched exponential behavior exp[−(t/τ)γ ] as it is frequently done to describe relaxation in
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glasses (see Supplementary Note I)35,49. Nonetheless, it is certainly possible to construct an activation energy spectrum of
the Gibbs model sufficiently wide and flat, for which the deviation from a log-law can be tuned to be small enough such that
the difference to the collective relaxation model is not experimentally accessible. Therefore, as of now we can only claim
that the collective relaxation model can provide a more coherent and plausible physical picture. We hope that in the future
molecular dynamics simulations will be able to provide reasonable estimates for activation energy spectra that will constrain the
Gibbs model sufficiently to resolve this question. Other independent relaxation data not related to electrical transport, such as
differential scanning calorimetry or shear modulus data as a function of relaxation59, could also provide additional insights into
the relaxation processes.

The kinetics of repeated rearrangements in the amorphous atomic structure ultimately lead to an increase in the activation
energy for electrical transport, Ea0, and of the distance between the electronic defect centers, s. These two consequences
of structural relaxation are expected to arise from annihilation of defects in the bandgap and the resulting shift of the Fermi
level accompanied by a widening of the bandgap due to local reordering22,25,26,43, both driven by the collective drift dynamics.
The empirical link between electrical transport and collective structural relaxation (Eq. (7) and (8)) derived in Section VI is
intriguingly simple and enables a quantitative description of a remarkably extensive set of experimental data over a wide range
of time (10 orders of magnitude) and temperature (160 K to 420 K). Nonetheless, a better theoretical understanding of Eq. (7)
and (8) would be desirable. One avenue to this understanding could be a statistically sufficient set of MD simulations that
would provide a quantitative link between the state of relaxation, density of defects in the bandgap and activation energy for
conduction. The other approach would be an analytic description of the defect density and activation energy derived from the
disordered structure and its evolution upon drift.

The Arrhenius parameters of structural relaxation in amorphous GST have been previously shown to obey the Meyer–Neldel
rule (MNR)58. The MNR states that the pre-exponential prefactor X0 of an activated process with activation energy ∆ follows
the empirical law X0 = X00e(∆/kBTMN), where TMN is the so-called isokinetic temperature for the process in question, and X00 is a
constant58,60. The MNR is commonly understood to result from the entropy of combining multiple excitations (or fluctuations) in
the thermal reservoir available for the kinetic processes60. We do not see any direct conflict between the MNR and the collective
relaxation model proposed in this paper, and hence MNR could be included in the prefactor ν0 of the rates of relaxation events
(n+ and n−) in our model for a more refined picture of the relaxation. We do observe evidence of the MNR in the experimental
resistance drift data of Figure 6a, however the resulting isokinetic temperature TMN = 1639 K is much higher than the value
of 760 K previously reported for amorphous Ge2Sb2Te5

58 (see Supplementary Note II). This discrepancy could be potentially
explained by the different material, doped Ge2Sb2Te5, used in our devices.

The high value of Es = 2.3 eV obtained from the fit in Figure 5 is consistent with the fact that no saturation of the temporal
evolution of the electrical conductivity of phase-change materials has yet been observed experimentally. According to the
model, such saturation would happen at time τ1, which depends exponentially on Es and takes values much larger than the
typical crystallization time of this material at a given temperature51. This shows that in most practical cases, no saturation of
structural relaxation is expected to be observable experimentally at least in the material studied here. It is also interesting that
Es, the upper limit of activation energy for structural relaxation in our model, is lower, but relatively close, to the activation
energy for crystal growth of 3.01 eV reported for the same material51. Indeed, both relaxation towards the ideal glass as well as
crystallization lead to the same local rearrangements22,25. Crystallization has the additional constraint that the local unit cells
are also in order relative to each other. Therefore, it is not surprising that the activation energies are similar but slightly higher in
the case of crystallization.

Moreover, the high value of Σ0 = 0.9 needed to describe the experimental data can be interpreted as a direct consequence of
the high quench rates (on the order of 1011 Ks−1) resulting from the RESET operation, which create a highly stressed amorphous
state. The fact that structural relaxation is observed already at microsecond time scales and at temperatures much lower than
room temperature clearly confirms that the state initially created by the melt-quench process is far away from equilibrium (Σ0
must be close to 1).

Finally, it is worth asking whether the findings reported here are applicable to other phase-change materials than the doped
Ge2Sb2Te5 used in this study. In a previous work, we showed that our model can also capture the structural relaxation in doped
GeTe PCM cells, albeit with different parameters23. Moreover, almost all phase-change materials studied to date, even when
composed of a single element (antimony)61, show similar resistance drift behavior that can be described using Eq. (1), although
the drift exponent νR can differ from one material to another43,62. Those findings suggest that the general drift behavior in
phase-change materials is fairly universal. Different materials will have different electrical transport properties and may relax
at different speeds, but the overall “log(t)” drift dynamics and their dependence on temperature are expected to hold no matter
what material is used.

IX. CONCLUSION

The root cause of resistance drift in PCM devices is the spontaneous structural relaxation of the amorphous state created via
the melt-quench process. This amorphous state over time evolves towards an energetically more favorable ideal glass state.
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First-principles calculations on amorphous GeTe indicate a direct correlation between the resistance increase and annihilation
of defects responsible for localized electronic states in the band gap, which occurs via a series of collective rearrangements of
the defective structural complexes. Based on this insight, we propose a collective relaxation model to describe the kinetics of
structural relaxation in amorphous phase-change materials. As opposed to previous approaches based on the relaxation model
by Gibbs31, a logarithmic evolution of the relaxation is obtained over a wide range of time and temperature without the need
to assume a rather wide and flat activation energy spectrum for the relaxation of defects. An intriguingly simple link between
electrical transport and structural relaxation is introduced and validated over an extensive range of experimental conditions. For
the first time, a model can consistently predict the changes observed in the I–V characteristics of PCM cells over time and
temperature. Constant and variable temperature drift measurements performed on PCM cells over a wide range of time (10
decades) and temperatures (160 - 420 K) are well captured by the model. Moreover, the model can capture the evolution of the
resistance distributions in an array of PCM cells by introducing variability in the size of the initially programmed amorphous
region as well as in the parameters governing drift. This work presents a quantitatively accurate and comprehensive description
of resistance drift in PCM devices, and is expected to be relevant for emerging application areas such as storage-class memory,
neuromorphic computing and computational memory.

X. EXPERIMENTAL SECTION

Experimental details: Experiments were conducted using mushroom-type PCM cells fabricated in the 90-nm technology node,
with the bottom electrode created via sub-lithographic key-hole process63. The phase-change material is doped Ge2Sb2Te5. The
bottom electrode has a radius of ∼ 20 nm and a length of ∼ 65 nm. The phase-change material is ∼ 100 nm thick and extends
to the top electrode, whose radius is ∼ 100 nm. The device is operated with an on-chip series resistor of ∼ 5 kΩ.

For the experiments of Section VI and the low-field resistance measurements of Section VII A, a JANIS ST-500-2-UHT
cryogenic probing station that operates from 77 K to 400 K and offers a temperature stability of less than 50 mK was used to
perform the measurements. A high-precision Keithley 2636B SMU was used for DC voltage outputs and for measuring the
corresponding current at the sample, with a resolution of ∼ 0.1 pA.

For the high-field resistance measurements of Section VII A and the experiments of Section VII B, the ambient temperature
was varied using a custom-made heating stage made of invar. The temperature was measured using a thermocouple inserted
into the invar block and controlled via a Eurotherm temperature controller. The temperature on top of the PCM chip was further
calibrated using an Omega silicon diode sensor. A Keithley 2400 SMU was used for DC voltage outputs and for measuring the
corresponding current at the sample. For the high-field resistance measurements, AC voltage outputs were given by a Agilent
81150A Pulse Function Arbitrary Generator and the corresponding cell voltage and current were measured with a Tektronix
DPO5104B digital oscilloscope. The current was amplified by an operational amplifier circuit with a total gain of ∼ 9.2 prior to
measurement.

Annealing experiments of Section VI: First, an amorphous region is created with a RESET current of 800 µA. Thereafter, the
PCM cell is annealed at a certain temperature for a certain time duration. After annealing, the I–V characteristics are measured
at different temperatures down to 180 K. This set of experiments was repeated eight times over annealing temperatures varying
from 250 K to 400 K in steps of 50 K and annealing times of 1000 s and 15 h. The resistance is calculated as the applied voltage
divided by the measured current. The resistance vs. voltage curves obtained after each annealing experiment are then collectively
fitted to the electrical transport model introduced in Section V. We assume that the applied electric field is F =V/ua, where V
is the applied voltage on the cell and ua an effective amorphous thickness roughly equal to the smallest pathway of conduction
through the amorphous region. Moreover, the device area used for the calculation of the current is assumed to be πr2

BE, where rBE
is an effective bottom-electrode radius. It has been shown that introducing these two effective parameters allows the mushroom
cell geometry to be well approximated by a cylindrical geometry of radius rBE with a uniform field applied over ua

64. It is found
that only the activation energy Ea0 and the intertrap distance s must be modified at different degrees of relaxation to achieve
good fits. The parameters related to the cell geometry are fixed to ua = 12.5 nm and rBE = 20 nm. The remaining parameters are
fixed to the values found in Ref. 20.
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