A COMPUTATIONAL FRAMEWORK FOR SYSTEMS PATHOLOGY OF PROSTATE CANCER

M. Koletou1, 2, 3, M. Gabrani2, T. Guo2, Q. Zhong2, U. Wagner2, R. Aebersold3, P. Wild1, M. Rodríguez Martínez2

1 Institute of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland
2 IBM Research Laboratory Zurich, Switzerland
3 Institute of Molecular Systems Biology, ETH Zurich, Switzerland

NOVEL COMPUTATIONAL FRAMEWORK
- stratify prostate cancer into insignificant and aggressive
- identify genomic alteration profiles that enable the stratification
- integrate multi-omics datasets to strengthen the analysis

PROJECT OUTLINE

Molecular Dataset → Dictionary (D) → Dictionary Network → Phenotype - Genotype association network

 raw genomic datasets

molecular fingerprints of cancer

DATA: Copy Number Alteration (CNA) profiles from TCGA prostate tumor samples

Dictionary (D)

Sparse Coefficients (X)

Pathway Example: HALLMARK PI3K-AKT-MTOR SIGNALING

patient to gene specific mapping allows us to explore a more personalized molecular fingerprint of prostate cancer

DICTIONARY LEARNING WITH SPARSE CODING

\[\min \| Y - D x \|^2, \quad s.t. \| x \|_1 \leq s, \| Y - D x \| \leq \epsilon \]

Acknowledgments
First and foremost we would like to acknowledge SystemsX.ch, whose funding made this interdisciplinary PhD project possible. We thank The Cancer Genome Atlas (TCGA) network for granting us access to the TCGA prostate tumor samples. We also thank Novartis Foundation Preclinical Precision Medicine (SystemsX.ch project no. 26227/2015), for the generous and precious data that made available to us. Finally, we would also like to thank our graduate student’s efforts that greatly assisted this project.

PROSTATE CANCER

Incidence and Significance
- very high incidence
- but most cases are insignificant
- diagnostic screening is controversial
- overdiagnosis and overtreatment

Need for biomarker candidates
- stratify aggressive from insignificant PCa
- more accurate prognosis
- better than Gleason score (a histopathological grading of prostate tissue obtained by biopsy)

The 2016 WHO Classification of Tumors of the Urinary System and Male Genital Organs Part B: Prostate and Bladder Tumors

Grading:
- Grade group 1: Gleason score ≤ 6
- Grade group 2: Gleason score 3 + 4 = 7
- Grade group 3: Gleason score 4 + 3 = 7
- Grade group 4: Gleason score 8
- Grade group 5: Gleason score ≥ 9

these are signs that help us to stratify aggressive from insignificant PCa.

A COMPUTATIONAL FRAMEWORK FOR SYSTEMS PATHOLOGY

M. Koletou1, 2, 3, M. Gabrani2, T. Guo2, Q. Zhong2, U. Wagner2, R. Aebersold3, P. Wild1, M. Rodríguez Martínez2

1 Institute of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland
2 IBM Research Laboratory Zurich, Switzerland
3 Institute of Molecular Systems Biology, ETH Zurich, Switzerland

NOVEL COMPUTATIONAL FRAMEWORK
- stratify prostate cancer into insignificant and aggressive
- identify genomic alteration profiles that enable the stratification
- integrate multi-omics datasets to strengthen the analysis

PROJECT OUTLINE

Molecular Dataset → Dictionary (D) → Dictionary Network → Phenotype - Genotype association network

 raw genomic datasets

molecular fingerprints of cancer

DATA: Copy Number Alteration (CNA) profiles from TCGA prostate tumor samples

Dictionary (D)

Sparse Coefficients (X)

Pathway Example: HALLMARK PI3K-AKT-MTOR SIGNALING

patient to gene specific mapping allows us to explore a more personalized molecular fingerprint of prostate cancer

DICTIONARY LEARNING WITH SPARSE CODING

\[\min \| Y - D x \|^2, \quad s.t. \| x \|_1 \leq s, \| Y - D x \| \leq \epsilon \]

Acknowledgments
First and foremost we would like to acknowledge SystemsX.ch, whose funding made this interdisciplinary PhD project possible. We thank The Cancer Genome Atlas (TCGA) network for granting us access to the TCGA prostate tumor samples. We also thank Novartis Foundation Preclinical Precision Medicine (SystemsX.ch project no. 26227/2015), for the generous and precious data that made available to us. Finally, we would also like to thank our graduate student’s efforts that greatly assisted this project.

PROSTATE CANCER

Incidence and Significance
- very high incidence
- but most cases are insignificant
- diagnostic screening is controversial
- overdiagnosis and overtreatment

Need for biomarker candidates
- stratify aggressive from insignificant PCa
- more accurate prognosis
- better than Gleason score (a histopathological grading of prostate tissue obtained by biopsy)

The 2016 WHO Classification of Tumors of the Urinary System and Male Genital Organs Part B: Prostate and Bladder Tumors

Grading:
- Grade group 1: Gleason score ≤ 6
- Grade group 2: Gleason score 3 + 4 = 7
- Grade group 3: Gleason score 4 + 3 = 7
- Grade group 4: Gleason score 8
- Grade group 5: Gleason score ≥ 9

these are signs that help us to stratify aggressive from insignificant PCa.

A COMPUTATIONAL FRAMEWORK FOR SYSTEMS PATHOLOGY

M. Koletou1, 2, 3, M. Gabrani2, T. Guo2, Q. Zhong2, U. Wagner2, R. Aebersold3, P. Wild1, M. Rodríguez Martínez2

1 Institute of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland
2 IBM Research Laboratory Zurich, Switzerland
3 Institute of Molecular Systems Biology, ETH Zurich, Switzerland

NOVEL COMPUTATIONAL FRAMEWORK
- stratify prostate cancer into insignificant and aggressive
- identify genomic alteration profiles that enable the stratification
- integrate multi-omics datasets to strengthen the analysis

PROJECT OUTLINE

Molecular Dataset → Dictionary (D) → Dictionary Network → Phenotype - Genotype association network

 raw genomic datasets

molecular fingerprints of cancer

DATA: Copy Number Alteration (CNA) profiles from TCGA prostate tumor samples

Dictionary (D)

Sparse Coefficients (X)

Pathway Example: HALLMARK PI3K-AKT-MTOR SIGNALING

patient to gene specific mapping allows us to explore a more personalized molecular fingerprint of prostate cancer

DICTIONARY LEARNING WITH SPARSE CODING

\[\min \| Y - D x \|^2, \quad s.t. \| x \|_1 \leq s, \| Y - D x \| \leq \epsilon \]

Acknowledgments
First and foremost we would like to acknowledge SystemsX.ch, whose funding made this interdisciplinary PhD project possible. We thank The Cancer Genome Atlas (TCGA) network for granting us access to the TCGA prostate tumor samples. We also thank Novartis Foundation Preclinical Precision Medicine (SystemsX.ch project no. 26227/2015), for the generous and precious data that made available to us. Finally, we would also like to thank our graduate student’s efforts that greatly assisted this project.

PROSTATE CANCER

Incidence and Significance
- very high incidence
- but most cases are insignificant
- diagnostic screening is controversial
- overdiagnosis and overtreatment

Need for biomarker candidates
- stratify aggressive from insignificant PCa
- more accurate prognosis
- better than Gleason score (a histopathological grading of prostate tissue obtained by biopsy)

The 2016 WHO Classification of Tumors of the Urinary System and Male Genital Organs Part B: Prostate and Bladder Tumors

Grading:
- Grade group 1: Gleason score ≤ 6
- Grade group 2: Gleason score 3 + 4 = 7
- Grade group 3: Gleason score 4 + 3 = 7
- Grade group 4: Gleason score 8
- Grade group 5: Gleason score ≥ 9

these are signs that help us to stratify aggressive from insignificant PCa.

A COMPUTATIONAL FRAMEWORK FOR SYSTEMS PATHOLOGY

M. Koletou1, 2, 3, M. Gabrani2, T. Guo2, Q. Zhong2, U. Wagner2, R. Aebersold3, P. Wild1, M. Rodríguez Martínez2

1 Institute of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland
2 IBM Research Laboratory Zurich, Switzerland
3 Institute of Molecular Systems Biology, ETH Zurich, Switzerland

NOVEL COMPUTATIONAL FRAMEWORK
- stratify prostate cancer into insignificant and aggressive
- identify genomic alteration profiles that enable the stratification
- integrate multi-omics datasets to strengthen the analysis

PROJECT OUTLINE

Molecular Dataset → Dictionary (D) → Dictionary Network → Phenotype - Genotype association network

 raw genomic datasets

molecular fingerprints of cancer

DATA: Copy Number Alteration (CNA) profiles from TCGA prostate tumor samples

Dictionary (D)

Sparse Coefficients (X)

Pathway Example: HALLMARK PI3K-AKT-MTOR SIGNALING

patient to gene specific mapping allows us to explore a more personalized molecular fingerprint of prostate cancer

DICTIONARY LEARNING WITH SPARSE CODING

\[\min \| Y - D x \|^2, \quad s.t. \| x \|_1 \leq s, \| Y - D x \| \leq \epsilon \]

Acknowledgments
First and foremost we would like to acknowledge SystemsX.ch, whose funding made this interdisciplinary PhD project possible. We thank The Cancer Genome Atlas (TCGA) network for granting us access to the TCGA prostate tumor samples. We also thank Novartis Foundation Preclinical Precision Medicine (SystemsX.ch project no. 26227/2015), for the generous and precious data that made available to us. Finally, we would also like to thank our graduate student’s efforts that greatly assisted this project.

PROSTATE CANCER

Incidence and Significance
- very high incidence
- but most cases are insignificant
- diagnostic screening is controversial
- overdiagnosis and overtreatment

Need for biomarker candidates
- stratify aggressive from insignificant PCa
- more accurate prognosis
- better than Gleason score (a histopathological grading of prostate tissue obtained by biopsy)

The 2016 WHO Classification of Tumors of the Urinary System and Male Genital Organs Part B: Prostate and Bladder Tumors

Grading:
- Grade group 1: Gleason score ≤ 6
- Grade group 2: Gleason score 3 + 4 = 7
- Grade group 3: Gleason score 4 + 3 = 7
- Grade group 4: Gleason score 8
- Grade group 5: Gleason score ≥ 9

these are signs that help us to stratify aggressive from insignificant PCa.