A Four-Terabit Single-Stage Packet Switch with Large Round-Trip Time Support

F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Iliadis
IBM Research, Zurich Research Laboratory, CH-8803 Ruschlikon, Switzerland
Motivation

- Merchant switch market
 - Achieve coverage of wide application spectrum: MAN/WAN/SAN

- Can a versatile switch architecture be designed to achieve this?

- Requires:
 - High performance for different protocols and QoS requirements
 - Allows very little assumptions about traffic properties
Outline

- Current single-stage switch architectures
- Preferred architecture
- Physical implementation of a 4 Tb/s switch
- Simulated performance: 256 x 256 system
- Conclusions
Current Single-Stage Switch Architectures

- VOQ-Based Switch Architectures
 - Centralized Scheduling
 - IQ (no speedup)
 - CIOQ (lim. ext. speedup)
 - Distributed Scheduling (full int. speedup)
 - Shared Buffer
 - Distributed Shared Buffer
 - Crosspoint Queueing
Selection of the Preferred Architecture

- Initial focus on high-level architecture issues

- Equally significant aspects arise when actually building the system
 - Physical system size
 - Multi-rack packaging, interconnection, clocking and synchronization are required
 - Power has become a tremendous challenge and a major design factor
 - Typically required: 2 kW per rack, 150 W per card, 25 W per chip
 - Switch fabric (SF) internal round trip (RT) has significantly increased
 - Switch core (SC), line cards (LC) and VLSI chip packaging

- Significant consequences for system cost, power and practical implementation
Size of a Terabit-Class System

- 19" Rack
- 4 Shelves
- 16 x OC-192 / Shelf
- 30 m / 100 feet

- Line Cards 0 - 63
- Line Cards 64 - 127
- 2.5 Tb/s Switch Core Active + Backup
- Line Cards 128 - 191
- Line Cards 192 - 255
Switch-Fabric-Internal Round Trip (RT)

- RT = Number of cells in flight:
 - \(R_{\text{total}} = R_{\text{cable}} + R_{\text{logic}} \)
 - \(R_{\text{cable}} \) = cells in flight over backplanes and/or cables
 - \(R_{\text{logic}} \) = cells pipelined in arbiter and SerDes (Serializer/Deserializer) logic

- RT has become an important SF-internal issue because of:
 - Increased physical system size
 - Increased link speed rates
 - SerDes circuits are now widely used to implement high-speed I/Os

<table>
<thead>
<tr>
<th>Line rate</th>
<th>OC-12</th>
<th>OC-48</th>
<th>OC-192</th>
<th>OC-768</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnect distance</td>
<td>1 m</td>
<td>1 m</td>
<td>6 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Interconnect type</td>
<td>backplane</td>
<td>backplane</td>
<td>cable</td>
<td>fiber</td>
</tr>
<tr>
<td>Packet duration</td>
<td>512 ns</td>
<td>128 ns</td>
<td>32 ns</td>
<td>8 ns</td>
</tr>
<tr>
<td>Round Trip</td>
<td><< 1 cell</td>
<td>~ 1 cell</td>
<td>16 cells</td>
<td>64 cells</td>
</tr>
</tbody>
</table>

Evolution of RT
Preferred Architecture (1/2)

- Combined input- and crosspoint- queued (CICQ) architecture
 - Decoupling of the arrival and departure processes
 - Distributed contention resolution over both inputs and outputs
 - Close to ideal performance is achieved without speedup of the SC
 - Memories are operated at the line rate
Preferred Architecture: CICQ (2/2)

- Advantages:
 - Performance and robust QoS of OQ switches
 - A buffered crossbar is inherently free of buffer hogging
 - A buffered SC enables hop-by-hop FC instead of end-to-end
 - Reduced latency at low utilization

- Distribution of OQs exhibits some of the fair queueing properties
 - Fair bandwidth allocation (e.g. with a simple Round-Robin)
 - Protection and isolation of the sources from each other
CICQ and CoS Support

- Selective queueing at each queueing point (iFI, SC, eFI)
- Service scheduling in addition to contention resolution (IQS, XQS)
- Additional scheduler at the egress (EQS)
CICQ and Parallel Sliced Switching

- 64 x 64 @ 64 Gb/s/port

<table>
<thead>
<tr>
<th>No. Master Chips</th>
<th>4 Tb/s</th>
<th>2 Tb/s</th>
<th>1 Tb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>x1</td>
<td>x1</td>
<td></td>
</tr>
<tr>
<td>No. Slave Chips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x15</td>
<td>x15</td>
<td>x15</td>
<td></td>
</tr>
<tr>
<td>x8</td>
<td>x8</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>No. Cards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x8</td>
<td>x8</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>x4</td>
<td>x4</td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>x2</td>
<td>x2</td>
<td></td>
</tr>
</tbody>
</table>
Crosspoint Buffer Dimensioning (1/2)

- Bandwidth (on the links) is becoming the scarce resource
 - Hence
 - Utilization must be maximized
 - Link speedup should be avoided as much as possible
 - Assuming a credit-based FC and a commun. channel with an RT of τ cells
 - τ credits are required to keep link busy

- Do we also need τ credits per XP?
 - Traffic agnostic principle:
 - The bandwidth of each flow can vary on an instantaneous basis
 - Link utilization principle:
 - Full utilization of the link bandwidth must be achieved in the absence of other flows
 - To provide 100% throughout under any traffic condition:
 - A minimum of τ cells are required per XP to ensure that any input can transmit to any output at any instant and at full rate.
 - (e.g. in the case of fully unbalanced traffic or in absence of output contention)
Crosspoint Buffer Dimensioning (2/2)

- **RT evaluation**
 - RT$_{cable} = 2dR / S_{light}C_{size} \approx 30$ cells
 (with $R = 64$ Gb/s, $d = 30$ m, $S_{light} = 250$ Mm/s (over the dielectric), $C_{size} = 512$ bits)
 - RT$_{logic} \approx 30$ cells (estimated by design)
 - RT$_{total} \approx 60$ cells

- **Buffer requirement** (assuming RT$_{total} = 64$ cells, $C_{size} = 64$ B)
 - Per logical XP: XPM$_{size} = \tau = (64 \times 64) = 4$ kB
 - Total for the switch core: $N^2 \times \tau = 16$ MB

- **XPM$_{size} = \tau = 64$ cells** provides:
 - 100% throughput under contentionless traffic and $d = 30$ m / 100 feet
 - 100% throughput under uniform traffic and $d \approx 3$ km / 10.000 feet
VLSI Implementation

- CMOS 0.11-\(\mu\)m, Std. cell design, 2.5 Gb/s SerDes

- Slave chip (64x64@2Gb/s/port)
 - 200 mm\(^2\), 20 W, 750 SIOs

- Split master chip (48x48@4Gb/s/port)
 - 225 mm\(^2\), 28 W, 825 SIOs
Simulated Performance

Parameters:

- 256 x 256 CICQ switch fabric
 - 64 x 64 SC with 4 external ports (OC-192) per SC port (OC-768)
 - 64/128 cells per XP partitioned into 4 areas of 16/32 cells
 - Ingress and egress link RT = 64 cells (at the OC-768 level)
 - Line card egress buffer = 4 x 256 cells

- CoS
 - 8 classes of service (C₀ is the highest, C₇ is the lowest priority)
 - Uniform distribution, i.e. 12.5% of offered traffic per class
 - Strict priority scheduling throughout the system (iFI, SC, eFI)
Non-Uniform Traffic

- Non-uniform traffic: We adopt the distribution used by Rojas-Cessa et al. (HPSR 2001) where:
 \[\lambda_{ij} = \lambda \left(w + \frac{1-w}{N} \right) \] if \(i = j \), \[\lambda \left(1-w \right)/N \] otherwise

 - \(N \) is the number of ports (256), \(\lambda_{ij} \) is the traffic intensity from input \(i \) to output \(j \)
 - \(\lambda \) is the aggregate offered load (100%), \(w \) is the non-uniformity factor

XPM = 68/72/80/ cells
Uniform Traffic

- Uniform traffic
 - Uniformly distributed bursts over all 256 destinations
 - Geometrically distributed bursts

XPM = 64 cells / Bursts = 30 cells

XPM = 128 cells / Bursts = 30 cells
Conclusions

- System design and implementation are equally important as performance considerations
 - Impact of power, packaging, links, RT

- Traffic agnosticness requirement in OEM
 - CoS support

- CICQ architecture is a viable solution
 - Scalable

- Demonstrated sizing
 - VLSI implementation of a single-stage 4 Tb/s switch
 - Excellent performance
Contacts

IBM Prizma research team

IBM PowerPRS™: Switch fabric products