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Advancing Compilation of DNNs for FPGAs using
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Abstract—The slow-down of technology scaling combined with the exponential growth of modern machine learning and artificial intelligence
models has created a demand for specialized accelerators, such as GPUs, ASICs, and field-programmable gate arrays (FPGAs). FPGAs can
be reconfigured and have the potential to outperform other accelerators, while also being more energy-efficient, but are cumbersome to use with
today’s fractured landscape of tool flows. We propose the concept of an operation set architecture to overcome the current incompatibilities and
hurdles in using DNN-to-FPGA compilers by combining existing specialized frameworks into one organic compiler that also allows the efficient
and automatic re-use of existing community tools. Furthermore, we demonstrate that mixing different existing frameworks can increase the
efficiency by more than an order of magnitude.
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1 INTRODUCTION

Machine learning (ML) and artificial intelligence (AI) have
evolved dramatically over the past decade. Currently, the com-
plexity of the best models doubles multiple times per year [1].
This evolution has been enabled and fueled by five decades of
technology scaling, which is winding down today due to the
end of Dennard scaling and the slowing down of transistor
development compared to Moore’s law. Hence, accelerators,
such as GPUs or application-specific integrated circuits (ASICs),
have become indispensable for ML. However, both accelera-
tor types have disadvantages when it comes to custom data
types, novel deep neural network (DNN) topologies, or simple
adaptability to new models over time. Furthermore, the fixed
architectures of GPUs and ASICs often limit research on new
AI models [1]. Due to these drawbacks, reconfigurable accel-
erators, such as field-programmable gate arrays (FPGAs), have
become increasingly popular. Using FPGAs, the architecture1

can be adapted precisely to the requirements of each application
and its data flow and data types. Consequently, FPGAs can
outperform GPUs in terms of latency, throughput, and energy-
efficiency [2], [3].

This superior flexibility and efficiency of FPGAs in accel-
erating AI models should have led to a wide adoption over
the past years. However, this did not happen yet due to many
problems that hinder the deployment of DNN-to-FPGA tools in
the wider community. In this paper, we analyze the limitations
of the state of the art and propose two architectural concepts —
operation set architecture and organic compilation— to overcome
the identified shortcomings.
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1. Terminology: In this work, the term topology refers to the struc-
ture of a neural network, i.e. its internal structure of operations or
layers. Architecture refers to the hardware implementation, and its
properties, of a neural network topology. Accelerator refers to the
subset of an architecture (or to the complete architecture). Framework
refers to a set of scripts used to turn a topology into an architecture (e.g.
hls4ml [4]). Tool flow refers to a set of tools used to map (i.e. compile,
synthesize, place and route) an accelerator to an FPGA device.
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Fig. 1. Basic principle of the Operation Set Architecture (OSA). An oper-
ation can be “executed” either by lowering it to an instruction (for engine-
type accelerators, left hand side) or by implementing it as parameterized
hardware IP core (for streaming-type accelerators, right hand side).

2 MOTIVATION AND RELATED WORK

2.1 Patterns of existing DNN-to-FPGAs flows

The FPGA community has been researching the implementa-
tion of neural networks on FPGAs for nearly 30 years, resulting
in a “Cambrian explosion”[2] of DNN-to-FPGA tools1 that scale
from Edge to Cloud and target a wide variety of applications.
Despite this variety, the architectures generated by all these
existing frameworks can be sorted into two categories: Engine-
type and streaming-type architectures, as depicted in the lower
half of Figure 1.

The engine-type (see 4a in Figure 1) consists of one or mul-
tiple custom designed processing units (i.e. engines) that can
execute domain specific instructions and are often referred to as
“NPU” or “xPU”. These processing engines frequently contain
dedicated units for matrix multiplication, vector processing,
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and non-linear functions, since these are the mathematical
foundations of today’s DNNs. Consequently, a DNN is broken-
down by a compiler into instructions that can be handled
by those processing engines. These instructions are issued by
a control unit at run-time and scheduled based on memory
dependencies and processing unit availability. Although this
pattern is simple, the design-space is huge: For example, the
processing elements can contain a variety of different special-
ized units, with different data sizes or types. Examples of this
type of architecture are TVM’s VTA [5], Xilinx’s Vitis AI, and
Microsoft’s Brainwave [2].

The streaming-type architecture (see 4b in Figure 1) in-
tegrates all the application-specific operations in the FPGA
logic, so that the data “just” streams through the fabric at run-
time. This type of architecture can achieve a higher throughput
with lower latencies, at the cost of higher resource usage,
compared to the engine-type. The design-space of this template
is also huge: Starting with data types of different precision per
operation to a variety of unrolling of loop parallelisms and
pipelining options. Example frameworks that generate this type
of accelerators are hls4ml [4], Haddoc2 [6], and FINN [7].

Both architecture “templates” are well justified for differ-
ent reasons. The streaming template is best used for DNNs
that require high throughput and/or low latency. The engine-
type accelerators are better for large DNNs in latency-relaxed
environments or if there are not enough FPGA resources to
implement the streaming-type.

2.2 Combining Streaming-Type and Engine-Type
In this section, we advocate for the deployment of mixed ar-
chitectures built upon a combination of specialized streaming-
and engine-type accelerators. To support our proposal, we
refer to the roofline analysis of a subset of the well-known
LeNet topology. This roofline is depicted in Figure 2. The
vertical dotted lines show the operational intensity (OI) of
three internal layers (convolution, pooling, dense layer) im-
plemented with streaming-type (red) and engine-type (orange)
of accelerators. The attainable performance of these layers is
capped by the FPGA I/O (green), DRAM (red), BRAM (blue),
and LUTRAM (orange) bandwidths, and the DSP GFLOPS/s
(magenta) lines. For each accelerator type, the relevant caps
differ, since the engine-type needs to read weights from the
DRAM and inference requests from I/O, while the streaming-
type only needs to read inference requests from I/O. As can be
seen in Figure 2, the left-hand dense operation implementation
has an OI of 1.5, while the right-hand 2D convolution operation
has an OI of roughly 50. In this case, the dense operation in
an engine-type accelerator would be heavily limited by the
network or DRAM bandwidth, while the streaming-type ac-
celerator would achieve near-optimal performance. In contrast,
both architecture-types of the two 2D convolution layers are
compute-bound and could be implemented by either stream
or engine architectures, depending on the intended resource
footprint.

Following this path, it would make sense to create an
accelerator where the first layers are executed on an engine-
type and the last dense layers on a streaming-type architecture.
This would achieve the same performance as an all-streaming
approach, but would save resources. On the contrary, the
required bandwidth for data moving between layers within
a DNN tends to decrease throughout the network topology.
Consequently, one could argue for using a streaming-based
architecture to sustain the high-bandwidth requirements of the
first layers, and to finish with an engine-based architecture at
the end. Both considerations to combine engine and streaming
architectures have the potential to increase the efficiency of the
resulting accelerator. Such a mixture of architectures can only be
implemented in a flexible way within an FPGA, and it would
be a pity for reconfigurable accelerators not to leverage this
advantage over GPUs or TPUs/DPUs.
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Fig. 2. Per-operation roofline analysis of a subset of LeNet.

2.3 Limitations of Existing DNN-to-FPGA Flows
With this work we explore if and how we could build a frame-
work that can search for the best combination of accelerator
types for a given DNN topology with specific performance and
resource requirements. Instead of building such a framework
from scratch, we decided to leverage the plentiful existing
frameworks and tool flows [8], [9] to avoid re-inventing the
wheel. Thus, we started to analyze existing DNN-to-FPGA
tool flows and frameworks, and we noticed major weaknesses:
First, we couldn’t find a single holistic DNN example that
was supported by a range of existing frameworks. Currently,
despite the vast range of options for DNN-to-FPGA flows, all
frameworks support only a limited range of DNN operations,
or a very narrow set of target devices, or both [8]. While this is
a hurdle when evaluating existing frameworks, it emphasizes
the advantage of combining them. Second, there exists no
guide to help the user select the right accelerator architecture
template or framework for a given DNN, let alone a single
solution or tool flow to execute arbitrary DNNs on a range
of FPGAs. Most published frameworks are tailored to a specific
network topology, problem domain, and target hardware [8],
[9]. Very recently, the authors of [10] released a framework
that can optimize different backend frameworks, but does not
combine them or help the user in select the right framework
for a given problem. Consequently, to choose a framework
for DNN acceleration on FPGAs for a particular application,
a user needs to navigate this maze of possibilities and the final
decision currently depends mostly on the familiarity, or just
pure awareness, of the user with the different solutions. Due to
these hurdles, the generally difficult usability, and the poor tool
support, FPGAs are not as popular as GPUs or domain-specific
ASICs, despite their advantages (cf. [1]).

Therefore, to evaluate our proposal of combining different
architectural templates, we characterized the performance and
resource consumption of a selection of existing frameworks (cf.
Table 1) and we built roofline models for each of them. To mix
engine and streaming architectures, we realized that two more
steps were necessary: First, we needed to identify a proper level
of abstraction that enabled us to compare different solutions.
Second, we had to create a way for different frameworks
to interoperate. This analysis led to the concept of organic
compilation and the definition of an operation set architecture,
both of which will be presented in the next section.

3 ORGANIC COMPILATION FOR FPGAS

We envision a holistic framework that is able to find the optimal
mix of architectural templates in a particular DNN graph while
considering a given set of resource, performance, or latency
constraints. For example, when targeting a high throughput ap-
plication that also requires high accuracy, the first convolutional
layers of a DNN, like in Figure 2, could be implemented with
a high-throughput streaming architecture from the open source
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framework haddoc2 [6]. Subsequently, the last dense layers in
this example can be mapped to the engine-type accelerator VTA
[5]. Such a combination of different architectural templates for
each layer increases the efficiency of the whole design, since
the individual OIs of the layers are considered. In another
situation, if the user has to solve a problem that requires ex-
treme throughput, but could maintain its accuracy with binary
weights, LogicNets would be the optimal solution [3]. After
we studied the abundance of existing DNN-to-FPGA tools,
each providing optimized implementations for specific areas
within the overall design-space, we conceive this proposed
holistic framework to be an “organic compiler”: Such an organic
compiler analyzes the DNN and performs the design-space
exploration with consideration of both architectural templates,
i.e. streaming and engine. On top of this, it also recommends the
best mix of existing frameworks to implement all parts of the given
DNN on FPGAs in the most efficient way.

3.1 Enabler: The Operation Set Architecture
In order to compare different mixtures of architecture-templates
and to combine them into optimal solutions, we propose the
operation set architecture (OSA) principle. The levels of abstrac-
tion of these operation sets are selected such that it allows the
compiler to make meaningful comparisons of performance and
resource metrics between totally different implementations.
With respect to the intermediate representation (IR) snippet
of an abstract syntax tree (AST) in Figure 1 1 , the conv2d,
relu, and max_pool2d constitute components of such oper-
ation sets. In essence, the operation sets are groups of those
components. We selected this level of abstraction after we revis-
ited the long list of specialized frameworks, existing domain-
specific languages (DSLs), IRs, and optimization techniques
of existing tool flows for DNNs. We observed that compilers
of frameworks that target engine-type accelerators apply the
heaviest optimizations. This results from the fact that DNNs
are compiled into engine-type instructions, for which well
known optimization methods from classical CPU and GPU
compilers can be used. Such optimizations include constant
folding, dead code elimination, operator fusion, elimination
of common sub-expressions, simplify paddings, and simplify
the data flow graph for inference. Surprisingly, frameworks
targeting streaming-type accelerators perform either no or only
a few hardware-specific optimizations and even leave constant
folding to the synthesis tools in most cases.

Therefore, we concluded that the level of abstraction for
comparing different implementations should be chosen such
that the decision between engine-type and streaming-type ac-
celerators happens after these »basic« optimizations but be-
fore the program gets lowered further, since many of these
optimizations would help the streaming-type accelerators, too.
Following this path, the compiler can optimize a DNN graph
above or at this level of abstraction (cf. 1 in Figure 1), de-
tached from the lower level details of the execution of one
operation. This level is similar to the abstraction levels used
by popular DSLs like RelayIR [5] or ONNX [11]. Only af-
ter that the compiler decides between engine and streaming
implementations of each operation. Consequently, operations
that are chosen to run on an engine are lowered into engine-
specific instructions 2a and operations that are selected to be
implemented on a streaming architecture are synthesized as
parameterized IP blocks 2b . From an AST 1 point of view,
all operations are guaranteed to be “executed” by the available
specialist frameworks, illustrated with the arrows 3a and 3b .
How the operations will be “executed” in detail is up to the
different frameworks (cf. 2a and 2b ). Thus, each of these
frameworks supports different a set of operations through its
chosen target architectures (cf. 4a and 4b ). However, the AST
can be optimized and transformed without considering these
details. In the example of Figure 1, the first two higher-level

operations, conv2d and relu, are executed on an engine-type
accelerator, while the following two operations, max_pool2d
and conv2d, are then “executed” by implementing IP cores in
a streaming way. The method 1 — 4 is what we refer to as
»Operation Set Architecture«, because it provides a meaningful
unified abstraction level and utilities to compare and optimize
totally different implementations of similar sets of operations.

3.2 Organic Compilation Framework
Starting from an application description using the OSA, we
want to reuse the large body of existing frameworks and their
highly optimized implementations as plugins for one holistic
compiler. This way, we can reuse and combine specific parts
of the various existing frameworks that are already generating
highly optimized, thought-through, and high-performance im-
plementations for sub-sets of DNN operations. This ecosystem
should eventually converge to an “organic compiler”, capable
of generating an optimized implementation of the full set of
operations required for DNNs in a fully automated manner.
To be practical and autonomous, an organic compiler must be
able to compare all the different architectural templates and
concrete implementations offered by the available specialist
frameworks. Therefore, we need a unified criterion, such as
FLOPS or iterations-per-second, to perform this comparison.
Next, we require one interface to blend — or to mix the cocktail
of — various solutions towards one optimal implementation.
This includes a mechanism to interface with all kinds of differ-
ent specialist frameworks in order to reuse them and not be
forced to “re-invent the wheel”. These interfaces must allow to
predict the performance of a particular operation, to generate
the implementation of it, and to derive the necessary “glue-
logic” to connect all the different operation implementations
automatically. Therefore, the prediction of the performance and
resource consumption of a particular operation implementation
is delivered by the design-space exploration (DSE) of each
framework individually using these interfaces. Consequently,
the OSA allows to combine the different DSE mechanisms of the
individual frameworks into one holistic model. In addition, the
analysis provided by the OSA would allow a precise calculation
of the communication costs among the different operation set
implementations.

4 EVALUATION

The idea of the “organic compiler” builds on two fundamental
assumptions: First, the expectation that one way to seamlessly
combine different research will benefit the whole AI-on-FPGA
ecosystem compared to constantly reinventing the wheel. Sec-
ond, we expect that each specialist framework is better than
others in one aspect, hence combining them should lead to
more efficient results. While the first assumption is optimistic
but difficult to measure, the second one can be evaluated with
some micro benchmarks.

Therefore, we selected well-known open source frameworks
from the community and created combined designs to see if
the combination of specialist frameworks does lead to superior
results. The details of the used frameworks and their archi-
tectural style are shown in Table 1. The model zoo used for
the evaluation is given in Table 2. We evaluated the employed
frameworks and built a roofline-like model for each framework
to estimate the resource usage and the performance for each
layer of the model zoo. Afterwards, we used these models to
calculate the resource consumption, throughput, and efficiency
of different combinations. The results are shown in Figure 3.

Note that all the created designs were guided to produce a
throughput of 5,000 inferences-per-second, but some of them
were unable to achieve that target, as shown in Figure 3c.
This number was chosen to serve low-latency high-throughput
applications [3]. Also, not all frameworks were able to achieve
this target with realistic resource consumption, e.g. Figures 3a
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Fig. 3. Comparison of different framework combinations. Each bar rep-
resents a combination of frameworks (see Table 1). Please note that not
all frameworks can implement all test cases. FPGA resources are based
on a Xilinx VU37P.

TABLE 1
DNN-to-FPGA frameworks used for evaluation

Name Architecture type Source
haddoc2 Streaming, impl. in VHDL [6]
hls4ml Streaming, impl. in Vivado HLS [4]

VTA Engine, impl. in Vivado HLS,

fixed architecture for all used test cases
[5]

TIPS Engine, impl. in Vivado HLS,

size of matrix-vector unit adapted for each test case
implemented by

the authors

and 3b show that a streaming-architecture for VGG11 with 8bit
weights would require 100+ Xilinx VU37P FPGAs. This case
underlines the sometimes extreme resource consumption of
streaming-type architectures. However, Figure 3d also shows
that the combination of different specialist frameworks and
architectural styles is indeed more efficient, i.e. it can achieve
a higher throughput-per-resource. In general, we consider
this efficiency as the main metric to evaluate the concept of
organic compilation, since i) all generated combinations are
optimized towards the user-provided throughput goal (e.g.,
5,000 iterations-per-second) and ii) the advantage provided by
the combination of different frameworks using the OSA is a
higher efficiency and not necessarily a higher performance. For
example, the mix of one streaming architecture (haddoc2) with
one engine unit (VTA or TIPS) leads to the highest arithmetic
densities in the cnn_3layer test case. Also, this combination
delivers the best performance for the MobileNetV2 (see Fig-
ure3c). Similarly, the combination of hls4ml and TIPS results in
the highest arithmetic densities for the cern_3layer and TFC
examples and can deliver up to 2.5 times more inferences-per-

TABLE 2
Model zoo for evaluation (all using 8bit weights)

Task Network
topology # Conv. # Dense Parameter

(KB)
Jet Tagging CERN 3 layer 0 4 4.4

Hand Gestures MPCNN 3 2 70.3

MNIST TFC 0 4 59.2
LeNet-5 3 2 32.6

CIFAR-10 3 layer (only conv. part) 3 0 90.6
CNV 6 3 1,544.8

CIFAR-100 VGG11 8 3 129,176.0

second-per-resource. Interestingly, for the TFC case, the com-
bination of two engines (TIPS and VTA) is more efficient than
just using VTA, since there must be multiple “cores” of these
engines to meet the high performance target. Furthermore, the
combination of different streaming architectures is beneficial, as
can be seen in the LeNet-5 case: The haddoc2 framework can-
not implement the dense layers, and hls4ml cannot implement
large convolutions, but combined they can meet the throughput
requirement. However, this example also shows that for the
small LeNet-5 the engine VTA alone can achieve enough
throughput and is the most efficient. As a summary, combining
different specialist frameworks enables the implementation of
DNN topologies that single frameworks cannot implement and
has the potential to increase the efficiency of those solutions by
more than one order of magnitude, as can be seen by the higher
arithmetic density for combined solutions for the examples
cnn_3layer, cern_3layer, MobileNetV2 and TFC.

5 CONCLUSION
Reconfigurable hardware including FPGAs is ideally suited to
address the demanding and diverse performance, latency, and
energy efficiency requirements of AI workloads. The adop-
tion of FPGAs for AI workloads is, however, limited by the
narrow solution space covered by the many existing DNN-to-
FPGA compilation frameworks. We propose and evaluate the
operation set architecture, which provides an optimal level of
abstraction to map the operations found in a DNN to FPGAs,
using a combination of architectural templates provided by
existing compilation frameworks. The combination of existing
frameworks and their architectural templates allows us to cover
the union of their solution spaces. The intersections of the
solution spaces enable us to choose the best available template
for each DNN layer, which improves the efficiency, throughput,
and arithmetic density of the generated designs by more than
10x. Based on the encouraging results from our evaluation of
the operation set architecture, the next step is to develop an
end-to-end organic compiler, where existing and future archi-
tectural templates can be easily plugged in. We are convinced
that optimizing the best mix of architectural templates for every
specific mix of operations can also be leveraged for different ap-
plications, like HPC, and for different SoC architectures, such as
CGRAs and Xilinx’ latest ACAP devices. The presented organic
compiler concept could lead to a growing ecosystem that can
reuse a rich variety of existing research in the community.
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