	IBM Long Range Signaling and Control

	IBM LoRaWAN Modem
(IMST WiMOD Edition)

	Version 1.2
8 - May - 2015

	IBM LoRaWAN Modem Product Information

LoRaWAN Modem is developed and marketed by the IBM Zurich Research Laboratory (IBM Research GmbH), 8803 Rüschlikon, Switzerland. For additional information please contact: lrsc@zurich.ibm.com.

© 2015 IBM Corporation
Copyright International Business Machines Corporation, 2015. All Rights Reserved.

The following are trademarks or registered trademarks of International Business Machines Corporation in the United States, or other countries, or both: IBM, the IBM Logo, Ready for IBM Technology.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

	2
	IBM LoRaWAN Modem Technical Specification

Table of Contents
1.	Introduction	4
2.	Modem Interface	6
2.1	Connection	6
2.2	LED Indicators	6
2.3	Messages	6
3.	Modem State	8
3.1	Activation	8
3.2	Firmware Personalization	9
4.	AT Command Set	10
4.1	NOP Command	10
4.2	Version Command	10
4.3	Reset Command	10
4.4	Factory Reset Command	11
4.5	Session Parameter Commands	11
4.6	Join Parameter Commands	12
4.7	Join Command	12
4.8	Transmit Command	13
4.9	Ping Mode Command	13
4.10	Alarm Timer Command	14
4.11	Event Mask Commands	14
4.12	Events	16
5.	Release History	18
[bookmark: _Toc270591599][bookmark: _Toc270593421][bookmark: _Toc270693287]
[bookmark: _Toc270878159][bookmark: _Toc419099088][bookmark: _Toc263419426]Introduction
The IBM LoRaWAN Modem provides access to LoRaWAN networks via high-level commands exchanged over a serial interface. All kinds of devices can be easily enabled to participate in LoRaWAN networks just by connecting the modem via a serial link and sending a few commands. The modem offers full functionality over a simple interface and handles all details of the LoRaWAN protocol internally. It can be personalized and configured with the specific network parameters.

The modem firmware is based on the IBM LoRaWAN C-library (LMiC). This edition is running on the IMST WiMOD module, featuring a STM32 Cortex-M3 MCU and the Semtech SX1272 LoRaTM radio. The firmware is shipped as Intel HEX file and can be run directly on the IMST WiMOD SK-iM880A (Figure 1) and on the IBM LRSC Modem boards (Figure 2).

	[bookmark: _Ref412804728][bookmark: _Ref412804713][bookmark: _Toc270693288]Figure 1. IMST / WiMOD LoRa™ Radio Starter Kit

	

	Directly supported by the IBM LoRaWAN Modem firmware (IMST WiMOD Edition).

	

	[bookmark: _Ref412805035]Figure 2. IBM LRSC Modem v1.0

	

	Directly supported by the IBM LoRaWAN Modem firmware (IMST WiMOD Edition).

	

	LoRaWAN Modem. Version 1.2.

	Modem State

	8
	IBM LoRaWAN Modem Technical Specification

	IBM LoRaWAN Modem Technical Specification
	9

[bookmark: _Toc419099089][bookmark: _Ref231471791][bookmark: _Toc270878160][bookmark: _Toc267654548][bookmark: _Toc270496999][bookmark: _Toc270497093][bookmark: _Toc270856856]Modem Interface
[bookmark: _Toc419099090]Connection
The modem is connected to the end device via a standard serial USART interface with the communication settings 115200bps, 8/N/1, using half-duplex mode. Only four digital lines are needed to connect the modem to the end device:
· 3.3V
· GND
· RX
· TX
[bookmark: _Toc419099091]LED Indicators
Two LEDs are used to indicate internal modem states:

	State
	IMST WiMOD SK-iM880A
	IBM LRSC Modem

	Power:
	LED D3 (green)
	LED D4 (red)

	Session:
	LED D2 (yellow)
	LED D3 (green)

The power LED is lit at startup of the modem firmware and is kept continuously on. It is switched off and on again for a very short moment whenever an event is generated to indicate activity. The session LED is driven depending on the activation state of the modem.

	Activation State
	Session LED

	Not activated
	Off

	Activated
	On

	Joining
	Blinking

[bookmark: _Ref412824663][bookmark: _Toc419099092]Messages
The modem processes all radio messages and LoRaWAN protocol states internally and can be driven by the end device over the serial link. It recognizes a set of commands to configure and query parameters and to initiate and report data exchanges with the network.

All commands are answered by the modem with a corresponding response message. The end device must not issue a new command before it has received the response to the previous command.

In addition to the response messages the modem can generate event messages. These event messages can inform the end device about certain state changes inside the modem triggered by the protocol. Given the nature of the LoRaWAN protocol these state changes and corresponding events can occur at any time. I.e. the end device application must be always prepared to accept event messages. This is even the case when a command/response exchange is in progress. If the generation of the event overlaps with the sending of a command, the event message could be received by the end device before the expected response message!

The types of event messages to be reported by the modem can be configured via an event mask (see section 4.11). Possible message flows are shown in Figure 3.

Currently the modem supports an ASCII AT command set (see section 4), inspired by the command set of Hayes data modems. A binary command set is planned.

	[bookmark: _Ref412809699]Figure 3. Modem Message Flow

	End Device
LoRaWAN Modem
serial link
command 1
response 1
event 2
event 1
command 2
response 2
event 3
event 4

	Exchange of command, response, and event messages.

	

[bookmark: _Ref412817879][bookmark: _Toc419099093]Modem State
The modem has a persistent memory to store its internal state. The stored state is continuously updated, so the modem can continue operation after a power cycle without reconfiguration. Most importantly the activation state (session state) is stored and updated. This includes session keys and frame sequence counters.
[bookmark: _Toc419099094]Activation
To be able to exchange data with the network server the modem needs to be activated. A valid activation state requires session parameters.
Session Parameters
The session parameters consist of:

· Network ID (32 bit)
· Short device address (32 bit)
· Network session key (128 bit)
· Application session key (128 bit)

These parameters can be obtained by three ways:

1. embedded in the modem firmware (personalized activation, see section 3.2.1)
2. configured by a modem command (personalized activation, see section 4.5.1)
3. established via the JOIN command (over-the-air activation, see sections 3.1.2 and 4.7)

Once obtained the session parameters are stored and updated in the persistent storage. Whenever new session parameters are set, the upstream and downstream sequence counters are reset to zero.
[bookmark: _Ref412820623]Join Parameters
[bookmark: _GoBack]If the modem is to be activated via over-the-air-activation (JOIN), the following join parameters are required:

· Device EUI (64 bit)
· Application EUI (64 bit)
· Device Key (128 bit)

The join parameters can be obtained by two ways:

1. embedded in the modem firmware (see section 3.2.2)
2. configured by a modem command (see section 4.6.1)

Using the join command (see section 4.7) a new session is established over-the-air and the obtained session parameters are stored and updated in the persistent storage.

[bookmark: _Toc419099095][bookmark: _Ref396390590][bookmark: _Ref412819460]Firmware Personalization
In some cases it is desirable to have the modem firmware preconfigured with the specific network parameters, so the modem is operational without any configuration commands. Therefore the parameters can be patched into the HEX file containing the firmware. Special patterns have been embedded in the firmware to identify the locations of the parameter blocks to be patched.
[bookmark: _Ref412821092]Session Parameters
The block of session parameters can be patched into the firmware file where the following 40-byte HEX-pattern is found:

 426d6633717561434a77564b55525757524565474b746d3070714c4430596872356370506b503673

The layout of the patched session parameters is as follows:

	Parameter
	Size in bytes
	Remark

	Network ID
	4
	least-significant-byte-first

	Short device address
	4
	least-significant-byte-first

	Network session key
	16
	

	Application session key
	16
	

[bookmark: _Ref412821134]Join Parameters
The block of join parameters can be patched into the firmware file where the following 32-byte HEX-pattern is found:

 6730434d7734397252626176364877514e303131356734324f706d76546e3771

The layout of the patched join parameters is as follows:

	Parameter
	Size in bytes
	Remark

	Device EUI
	8
	least-significant-byte-first

	Application EUI
	8
	least-significant-byte-first

	Device Key
	16
	

[bookmark: _Ref412879428][bookmark: _Toc419099096]AT Command Set
Modem commands, responses and events are encoded as ASCII strings terminated by a carriage-return character <CR>. This way the modem can be directly accessed with the terminal application of your choice and the commands can be typed and read in a human-readable form.

All commmands are prefixed with the characters “AT“, followed by comma-separated parameters, and terminated by <CR>. The interpretation of the commands is case-insensitive. All commands will be answered by the modem with “OK” and optional parameters and <CR>, or “ERROR<CR>”. As mentioned in section 2.3, intermittent events can be generated by the modem before the response is sent. Event names are prefixed with “EV_” and are followed by optional comma-separated parameters and a trailing <CR>.

All available commands with their responses and possible events are described in detail in the following sub sections.
[bookmark: _Toc419099097]NOP Command
An empty command can be used to test the communication between the modem and the end device. It performs no operation.

	Command
	AT

	Response
	OK

Example:

→ AT
[bookmark: __RefHeading__532_1143705402]← OK

[bookmark: _Toc419099098]Version Command
This command can be used to query the firmware version of the modem. It will return a fixed-length string containing the major and minor version number and the compile time of the modem firmware.

	Command
	ATV?

	Response
	OK,<version string>

Example:

→ ATV?
← OK,VERSION 1.2 (May 8 2015 16:32:38)

[bookmark: _Toc419099099]Reset Command
This command resets the internal state engine and reloads session state from persistent memory.

	Command
	ATZ

	Response
	OK

Example:

→ ATZ
← OK

[bookmark: _Toc419099100]Factory Reset Command
This command resets the persistent memory to factory state. All parameters will be reverted to the values built into the firmware or cleared. Manually configured parameters and progressed session state will be discarded.

	Command
	AT&F

	Response
	OK

Example:

→ AT&F
← OK

[bookmark: _Toc419099101]Session Parameter Commands
The following two commands allow to set and query the session parameters.
[bookmark: _Ref412819640]Set Session Parameter Command
This command allows to directly set the session parameters. The new session parameters will be written to persistent memory and sequence counters will be reset to zero.

	Command
	ATS=<network id>,<device address>,<network session key>,<application session key>

	Response
	OK

Example:

→ ATS=00000002,05A49FEC,00112233445566778899AABBCCDDEEFF,00112233445566778899AABBCCDDEEFF
← OK

Query Session Parameter Command
This command returns the current session parameters. If the modem is not activated, i.e. no session exists, ERROR will be returned. Note: The session keys are not returned by the modem!

	Command
	ATS?

	Response
	OK, <network id>,<device address>,<up sequence counter>,<down sequence counter>

Example:

→ ATS?
← OK,00000002,05A49FEC,00000004,00000003

[bookmark: _Toc419099102]Join Parameter Commands
The following commands allow to set and query the join parameters which will be used by the JOIN command (section 4.7) for over-the-air activation.
[bookmark: _Ref412821165]Set Join Parameter Command
This command allows to directly set the join parameters.

	Command
	ATJ=<device EUI>,<application EUI>,<device key>

	Response
	OK

Example:

→ ATJ=FFFFFFFFFFFFFF00,DEDEAAAA0000001A,AA5555555555555555AAAAAAAAAAAAAA
← OK

Query Join Parameter Command
This command returns the join parameters. If no join parameters are set, ERROR will be returned.
Note: The device key is not returned by the modem!

	Command
	ATJ?

	Response
	OK,<device EUI>,<application EUI>

Example:

→ ATJ?
← OK,FFFFFFFFFFFFFF00,DEDEAAAA0000001A

[bookmark: _Ref412819664][bookmark: _Toc419099103]Join Command
This command triggers the over-the-air activation using the configured join parameters to establish a new session. If no join parameters are configured the command will return ERROR.

	Command
	ATJ

	Response
	OK

	Events
	EV_JOINING
EV_JOINED

The command immediately triggers the JOINING event and the session LED starts blinking. When the join procedure succeeded a JOINED event is generated and the session LED is turned on. The newly established session parameters will be stored persistently and the sequence counters will be reset to zero.

Example:

→ ATJ
← OK
← EV_JOINING
← EV_JOINED

[bookmark: _Toc419099104]Transmit Command
This command is used to send upstream data to the network server. If the modem is not activated and join parameters are set, the modem will implicitely join and establish a new session. If the modem is not activated and no join parameters are set, ERROR will be retuned.

	Command
	ATT<confirmed>,<port>[,<data>]

	Response
	OK

	Events
	EV_TXCOMPLETE,<flags>[,<port>[,<data>]]

The data is addressed to a specific port (01-FF) and can be requested to be confirmed (0 or 1). After the data is sent by the modem it will check for downstream frames sent by the server. These frames could contain protocol information (like ACK or NACK), or application data. In any case an EV_TXCOMPLETE event will be generated to signal transmission and optional reception (see section 4.12 for description of event messages). Note: The data will only be sent at the point in time allowed by the modem’s duty cycle.

Example:

→ ATT0,FF,1122334455 (send data unconfirmed to port 255)
← OK
← EV_TXCOMPLETE,00 (data sent, nothing received)

→ ATT1,03,112233 (send data confirmed to port 3)
← OK
← EV_TXCOMPLETE,A2 (data sent, ACK received in second window)

→ ATT0,04,112233 (send data unconfirmed to port 4)
← OK
← EV_TXCOMPLETE,02,0A,C0FFEE (data sent, data received in second window on port 10)

[bookmark: _Toc419099105]Ping Mode Command
This command enables ping mode and prepares the modem for slotted reception of unsolicited downstream data (class B network). The modem will immediately start scanning for a beacon, and if found, it will deliver an EV_BEACON_FOUND event. This command requires a valid session. If no session exists, ERROR will be returned.

	Command
	ATP<interval exp>

	Response
	OK

	Events
	EV_BEACON_FOUND
EV_RXCOMPLETE,<flags>[,<port>[,<data>]]

The ping interval is specified as an exponent (0-7) and is defined as 2<interval exp> seconds. Whenever data is received in a ping slot window, an EV_RXCOMPLETE event is generated. See section 4.12 for a detailed description of event messages. Note: The network server is only notified of the ping mode and the interval with the next upstream frame sent by the modem!

Example:

→ ATP2 (set 4sec ping interval and scan for beacon)
← OK
← EV_BEACON_FOUND

→ ATT0,01,AABBCC (send data, notify server of ping interval)
← OK
← EV_TXCOMPLETE,00

← EV_RXCOMPLETE,0P,01,112233 (data received in ping window on port 1)
← EV_RXCOMPLETE,0P,01,4455667788 (data received in ping window on port 1)

[bookmark: _Toc419099106]Alarm Timer Command
This command sets an alarm timer to the specified number of seconds (variable-length HEX). When the timer expires an EV_ALARM event is generated. It can be used by the end device to periodically wake up or schedule actions at a specified time.

	Command
	ATA<seconds>

	Response
	OK

	Events
	EV_ALARM

Example:

→ ATA1E (request ALARM event in 30 seconds)
← OK
← EV_ALARM

[bookmark: _Ref412879389][bookmark: _Toc419099107]Event Mask Commands
The following commands allow to modify and query the event types which will be reported by the modem. Events not enabled in the event mask will be silently dropped and not reported by the modem.
Query Event Mask Command
This command returns the current event mask. By default all events are enabled.

	Command
	ATE?

	Response
	OK,<event mask>

Event mask can be ALL, or NONE, or a list of event names separated by the “|” character.

Example:

→ ATE?
← OK,ALL

→ ATE?
← OK,JOINED|TXCOMPLETE|RXCOMPLETE

Set Event Mask Command
This command directly sets the event mask to the specified event types. Event names can be abbreviated and all events matching the prefix will be included. Special masks ALL and NONE are recognized by this command.

	Command
	ATE=<event mask>

	Response
	OK

Example:

→ ATE=ALL (select all events)
← OK

→ ATE=JOIN|TX|RX (select events beginning with JOIN* TX* RX*)
← OK
→ ATE?
← OK,JOINING|JOINED|JOIN_FAILED|TXCOMPLETE|RXCOMPLETE

Add Event Mask Command
This command adds events to the current event mask.

	Command
	ATE+<event mask>

	Response
	OK

Example:

→ ATE+JOIN (add JOINING, JOINED, JOIN_FAILED to the current event mask)
← OK

Remove Event Mask Command
This command removes events from the current event mask.

	Command
	ATE-<event mask>

	Response
	OK

Example:

→ ATE-RX|TX (remove RXCOMPLETE, TXCOMPLETE from the current event mask)
← OK

[bookmark: _Ref412889329][bookmark: _Ref412891542][bookmark: _Toc419099108]Events
The following events can be generated by the modem if they are enabled in the event mask.

· EV_JOINING
The modem has started joining the network.
· EV_JOINED
The modem has successfully joined the network and is now ready for data exchanges.
· EV_JOIN_FAILED
The modem could not join the network (after retrying).
· EV_REJOIN_FAILED
The modem did not join a new network but is still connected to the old network.
· EV_TXCOMPLETE
The data has been sent, and eventually downstream data has been received in return. If confirmation was requested, the acknowledgement has been received.
· EV_RXCOMPLETE
Downstream data has been received.
· EV_SCAN_TIMEOUT
No beacon was received within the beacon interval.
· EV_BEACON_FOUND
The first beacon has been received.
· EV_BEACON_TRACKED
The next beacon has been received at the expected time.
· EV_BEACON_MISSED
No beacon was received at the expected time.
· EV_LOST_TSYNC
Beacon was missed repeatedly and time synchronization has been lost.
· EV_RESET
Session reset due to rollover of sequence counters. If configured, the join parameters will be used to automatically rejoin the network.
· EV_LINK_DEAD
No confirmation has been received from the network server for an extended period of time. Transmissions are still possible but their reception is uncertain.

Most events don’t have return parameters and will be reported only with the event name. Only the two events EV_TXCOMPLETE and EV_RXCOMPLETE do have return parameters:

· EV_TXCOMPLETE,<recv flags>[,<port>[,<data>]]
· EV_RXCOMPLETE,<recv flags>[,<port>[,<data>]]

Both event messages are always followed by flags to indicate the reception state. Optionally these events are appended with port information and the received application data.

The reception flags are coded as two ASCII digits <X><Y> with the following meaning:

	Digit Value
	Description

	<X> = 0
	No information

	<X> = A
	Frame acknowledged, ACK

	<X> = N
	Frame not acknowledged, NACK

	<Y> = 0
	No frame received

	<Y> = 1
	Frame received in down window 1

	<Y> = 2
	Frame received in down window 2

	<Y> = P
	Frame received in ping slot

[bookmark: _Toc270856295][bookmark: _Toc270879879][bookmark: _Toc419099109]Release History
	Version and date
	Description

	V 1.0
February 2015
	Initial version.

	V 1.1
March 2015
	Minor internal fixes. Document reformatting.

	V 1.2
May 2015
	Rebuilt using LMiC v1.5.

image2.png

image3.png

image4.png

image5.png

