Overview

We are investigating the fundamental properties of individual atoms and molecules on solid surfaces. We are specifically interested in the build-up of novel molecules and atomic-scale nanostructures using atom manipulation, that is, creating them with the tip of the microscope.

Our experiments exploit the extreme versatility and sensitivity of our home built low-temperature scanning tunneling microscope/atomic force microscope (STM/AFM). Such a machine is not only a nano-analytical instrument to perform imaging and spectroscopy on the atomic scale, but can also be used as a tool to assemble atomic structures, manipulate and switch molecules, attach and remove single charges at will, and induce chemical reactions including the synthesis of individual molecules.

Charge control

 

 

 

Technique

Imaging the structure of molecules with atomic resolution was achieved by noncontact atomic force microscopy (NC-AFM). Our low-temperature STM/AFM is based on a qPlus sensor design [Ref] and is operated in an ultrahigh vacuum at a temperature of 5 K.

The key step to achieving atomic resolution on molecules is the functionalization of the microscope’s tip apex with a suitable, atomically well-defined termination, such as a CO molecule [Ref]. In this case, atomic manipulation techniques are essential for the controlled buildup of the tip used for AFM imaging [Ref].

The chemical structure of a molecule resolved by atomic force microscopy
L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer,
Science 325, 1110, 2009.

Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules
F. Mohn, B. Schuler, L. Gross, G. Meyer,
Appl. Phys. Lett., 102, 073109, 2013.

We also perform density functional theory (DFT) calculations to elucidate the physical origins of the contrast observed. The calculations reveal that the Pauli repulsion is the source of the atomic resolution [Ref] and yield insights into the important role of the tip functionalization [Ref].

Bond-order discrimination by atomic force microscopy
L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Peña, A. Gourdon, G. Meyer, Science 337, 1326, 2012. Cover image.

Science cover
Anatomy of a molecule

IBM scientists first to image the anatomy of a molecule [from Ref].

Molecule characterization

We strive to image and measure molecular properties with ever increasing resolution. Using AFM imaging  with functionalized tips we demonstrated that several complementary properties of individual molecules can be resolved atomically with regard to their charge distribution [Ref], charge state [Ref], bond order [Ref], and adsorption geometry [Ref].

In addition, molecular orbital densities can be resolved by STM [Refs].

We employ molecule characterization by AFM and STM to identify molecules in our search for novel natural products [Refs] to verify synthesized molecules [Refs] and to study the properties of elusive molecules created by atom manipulation [Refs].

Imaging the charge distribution within a single molecule
F. Mohn, L. Gross, N. Moll, G. Meyer,
Nat. Nanotech. 7, 227, 2012.

Molecular structure elucidation with charge-state control
S. Fatayer, F. Albrecht, Y. Zhang, D. Urbonas, D. Peña, N. Moll, L. Gross,
Science 365, 6449, 2019.

Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy
B. Schuler, W. Liu, A. Tkatchenko, N. Moll, G. Meyer, A. Mistry, D. Fox, L. Gross,
Phys. Rev. Lett. 111, 106103, 2013.

High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip
L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, M. Persson,
Phys. Rev. Lett. 107, 086101, 2011.


Molecules on Insulating Films: Scanning-Tunneling Microscopy Imaging of Individual Molecular Orbitals
J. Repp, G. Meyer, S. Stojkovic, A. Gourdon, C. Joachim,
Phys. Rev. Lett. 94, 026803, 2005.

A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: Highly modified halogenated dipeptides from Thuiaria breitfussi
K.O. Hanssen, et al.,
Angew. Chem. Int. Ed. 51, 12238, 2012.


Organic structure determination using atomic-resolution scanning probe microscopy
L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W.M. Abdel-Mageed, M. Jaspars, 
Nat. Chem. 2, 821, 2010.

Synthesis of a Naphthodiazaborinine and Its Verification by Planarization with Atomic Force Microscopy
Z. Majzik, A.B. Cuenca, N. Pavliček, N. Miralles, G. Meyer, L. Gross, E. Fernández,
ACS Nano, 10, 5340, 2016.


From Perylene to a 22‐Ring Aromatic Hydrocarbon in One‐Pot
B. Schuler, S. Collazos, L. Gross, G. Meyer, D. Pérez, E. Guitián, D. Peña,
Angew. Chem. Int. Ed. 126, 9150, 2014.

Polyyne formation via skeletal rearrangement induced by atomic manipulation
N. Pavliček, P. Gawel, D.R. Kohn, Z. Majzik, Y. Xiong, G. Meyer, H.L. Anderson, L. Gross,
Nat. Chem. 10, 2018.


Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces
Z. Majzik, N. Pavlicek, M. Vilas-Varela, D. Pérez, N. Moll, E. Guitián, G. Meyer, D. Peña, L. Gross,
Nat. Comm. 9, 1198, 2018.


Generation and Characterization of a Meta-Aryne on Cu and NaCl Surfaces
N. Pavliček, Z. Majzik, S. Collazos, G. Meyer, D. Pérez, E. Guitian, D. Peña, L. Gross,
ACS nano 11, 10768–10773, 2017.


Synthesis and characterization of triangulene
N. Pavliček, A. Mistry, Z. Majzik, N. Moll, G. Meyer, D.J. Fox, L. Gross,
Nat. Nano. 12, 308–311, 2017.


Reversible Bergman cyclization by atomic manipulation
B. Schuler, S. Fatayer, F. Mohn, N. Moll, N. Pavliček, G. Meyer, D. Peña, L. Gross,
Nat. Chem. 8, 220, 2016.


On-surface generation and imaging of arynes by atomic force microscopy
N. Pavliček, B. Schuler, S. Collazos, N. Moll, D. Pérez, E. Guitián, G. Meyer, D. Peña, L. Gross,
Nat. Chem. 7, 623, 2015.

Atomic manipulation identification

Molecular mixture characterization

The single molecule sensitivity of AFM gives us the unprecedented ability to investigate complex molecular mixtures on the basis of individual molecules, i.e., molecule by molecule. In close collaboration with external groups we apply our technique to investigate molecular mixtures related to

  • Combustion products [Ref] and soot formation [Ref],
  • Fuel pyrolysis [Ref],
  • Asphaltenes [Ref],
  • Heavy oil fractions [Ref],
  • Marine dissolved organic carbon [Ref],
  • Lab analogs of the atmosphere of Saturn’s moon Titan [Ref].

Insights into incipient soot formation by atomic force microscopy
F. Schulz, M. Commodo, K. Kaiser, G. De Falco, P. Minutolo, G. Meyer, D. Andrea, L. Gross,
Proc. Comb. Inst., 2018.

“Atomic force microscopy identifying fuel pyrolysis products and directing the synthesis of analytical standards”
S. Fatayer, N. Poddar, S. Quiroga, F. Schulz, B. Schuler, S.V. Kalpathy, G. Meyer, D. Pérez, E. Guitian, D. Peña, M.J. Wornat, L. Gross,
J. Am. Chem. Soc. 140, 8156–8161, 2018.

Direct visualization of individual aromatic compound structures in low molecular weight marine dissolved organic carbon
S. Fatayer, A.I. Coppola, F. Schulz, B.D. Walker, T.A. Broek, G. Meyer, E.R. Druffel, M. McCarthy, L. Gross,
Geophys. Res. Lett., 2018.

Heavy oil based mixtures of different origins and treatments studied by AFM
B. Schuler, S. Fatayer, G. Meyer, E. Rogel, M. Moir, Y. Zhang, M.R. Harper, A.E. Pomerantz, K.D. Bake, M. Witt, D. Peña, J.D. Kushnerick, O.C. Mullins, C. Ovalles, F.G.A. van den Berg, L. Gross,
Energy & Fuels 31, 6856–6861, 2017.

Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy
B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross,
J. Am. Chem. Soc. 137, 9870, 2015.

Imaging Titan’s Organic Haze at Atomic Scale
F. Schulz et al.,
Astrophys. J. 908, L13, 2021.

Soot formation

Individual molecules resolved in incipient soot formation [from Ref].

Molecule synthesis by atom manipulation

Using atomic manipulation, we can form and break individual bonds within molecules [Ref]. We create radicals on the surface and characterize them. Intramolecular bonds can also be created, as demonstrated in the reversible Bergman reaction, induced by atomic manipulation [Ref]. We also use atom manipulation to create and study elusive and novel molecules such as

  • Arynes, highly reactive intermediates involved in many chemical transformations [Ref],
  • Triangulene, a pi-diradical featuring a triplet ground state [Ref],
  • Indenofluorene, an antiaromatic molecule [Ref],
  • Polyynes, which are linear, single-atom-wide carbon wires [Ref],
  • Cyclo[18]carbon, an elusive carbon allotrope that consists only of sp-hybridized carbon. Using AFM, we could reveal its polyynic structure [Ref].

Polyyne formation via skeletal rearrangement induced by atomic manipulation
N. Pavliček, P. Gawel, D.R. Kohn, Z. Majzik, Y. Xiong, G. Meyer, H.L. Anderson, L. Gross,
Nat. Chem. 10, 2018.

On-surface generation and imaging of arynes by atomic force microscopy
N. Pavliček, B. Schuler, S. Collazos, N. Moll, D. Pérez, E. Guitián, G. Meyer, D. Peña, L. Gross,
Nat. Chem. 7, 623, 2015.

Synthesis and characterization of triangulene
N. Pavliček, A. Mistry, Z. Majzik, N. Moll, G. Meyer, D.J. Fox, L. Gross,
Nat. Nano. 12, 308–311, 2017.

On-surface generation and imaging of arynes by atomic force microscopy
N. Pavliček, B. Schuler, S. Collazos, N. Moll, D. Pérez, E. Guitián, G. Meyer, D. Peña, L. Gross,
Nat. Chem. 7, 623, 2015.


Generation and Characterization of a Meta-Aryne on Cu and NaCl Surfaces
N. Pavliček, Z. Majzik, S. Collazos, G. Meyer, D. Pérez, E. Guitian, D. Peña, L. Gross,
ACS nano 11, 10768–10773, 2017.

Reversible Bergman cyclization by atomic manipulation
B. Schuler, S. Fatayer, F. Mohn, N. Moll, N. Pavliček, G. Meyer, D. Peña, L. Gross,
Nat. Chem. 8, 220, 2016.

Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces
Z. Majzik, N. Pavlicek, M. Vilas-Varela, D. Pérez, N. Moll, E. Guitián, G. Meyer, D. Peña, L. Gross,
Nat. Comm. 9, 1198, 2018.

An sp-hybridized molecular carbon allotrope, cyclo [18] carbon
K. Kaiser et al.,
Science 365, 1299, 2019.

Atomic manipulation generation

Switches

We aim to employ single atoms and molecules as switches and logic elements for novel concepts in information technology, based on single electron transfer, with ultimate scaling and low power consumption. We discovered and characterized reversible switches based on bond formation between a metal atom and a molecule [Ref], cyclization in radicals (reversible Bergman reaction, switching of the spin multiplicity) [Ref] and switching atomic charge states [Ref] and adsorption geometries [Ref].

Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules
P. Liljeroth, J. Repp, G. Meyer, 
Science
 317, 1203-1206, 2007.

Reversible Bond Formation in a Gold-Atom–Organic-Molecule Complex as a Molecular Switch
F. Mohn, J. Repp, L. Gross, G. Meyer, M.S. Dyer, M. Persson, 
Phys. Rev. Lett.
 105, 266102, 2010.

Manipulation of the Charge State of Single Au Atoms on Insulating Multilayer Films
W. Steurer, J. Repp, L. Gross, I. Scivetti, M. Persson, G. Meyer,
Phys. Rev. Lett.
, 114, 03680, 2015.

Toggling the Local Electric Field with an Embedded Adatom Switch
W. Steurer, B. Schuler, N. Pavliček, L. Gross, I. Scivetti, M. Persson, G. Meyer,
( Nano Lett.
. 15, 5564, 2015.

Atomic manipulation switches

Au cation switch that can be used to toggle the local electrostatic field [Ref].

Charge control

One can attach and detach single electron charges to molecules and atoms using the microscope tip [Ref]. Using Kelvin probe force microscopy, we detect atomic charge states [Ref] and molecular charge distributions [Ref].

We are interested in controlling and measuring single electron charge transfer between molecules [Ref] and ultimately within molecule–metal networks on surfaces. Recently we measured the reorganization energy upon charging a single molecule on an insulator. For this we used the AFM as a single-electron current meter [Ref].

Moreover, we study the minute changes in the molecular structure, related to different charge states. The structural and functional changes of charged molecules are important in catalysis, electrochemistry, photoconversion and charge transfer [Ref].

 


Charge control

Structure elucidation with Charge control [Ref].

 

Charge control

Prophine, the parent compound of hemoglobin and chlorophyll, imaged in three different charge states: neutral (F0), negative (F-1) and doubly negative (F-2).  [Ref].

Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy
S. Fatayer, B. Schuler, W. Steurer, I. Scivetti, J. Repp, L. Gross, M. Persson, G. Meyer,
Nat. Nano. 13, Nature Publishing Group, 376–380, 2018.

Controlling the charge state of individual gold adatoms
J. Repp, G. Meyer, F.E. Olsson, M. Persson,
Science 305, 493, 2004.

Manipulation of the Charge State of Single Au Atoms on Insulating Multilayer Films
W. Steurer, J. Repp, L. Gross, I. Scivetti, M. Persson, G. Meyer,
Phys. Rev. Lett., 114, 03680, 2015.


Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy
L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer
Science 324, 1428–1431, 2009.

Probe-based measurement of lateral single-electron transfer between individual molecules
W. Steurer, S. Fatayer, L. Gross, G. Meyer,
Nat. Comm. 6, 8353, 2015.

Ask the experts

Leo Gross

Leo Gross
IBM Research scientist

Florian Albrecht

Florian Albrecht
Post-doctoral researcher

Shadi Fatayer

Shadi Fatayer
Post-doctoral researcher

Katharina Kaiser

Katharina Kaiser
PhD student

Shantanu Mishra

Shantanu Mishra
Post-doctoral researcher

 

 

 

Projects & funding

This work received partial support from the ERC consolidator grant AMSEL (ongoing), the ERC advanced grant CEMAS (concluded) and the EU projects SPRING (ongoing) and PAMS (concluded). It is also part of the IBM Research Frontiers Institute.

PAMS logo

PAMS
Planar Atomic and Molecular Scale Devices

Selected publications