b

2020 | 2019 |2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994

2020

  1. Tunable bidirectional electroosmotic flow for diffusion‐based separation
    Bacheva, V., Paratore, F., Rubin, S., Kaigala, G. V., and Bercovici, M.
    Angewandte Chemie International Edition, 2020.
    [ Blog ]
  2. Build A Sophisticated Microscope Using Lego, 3D Printing, Arduinos, and a Raspberry Pi
    Temiz, Y.
    IEEE Spectrum, May 2020.
    Video
  3. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics
    Arango, Y., Temiz, Y., Gökçe, O. and Delamarche, E.
    Science Advances 6(16), 2020.
    Video
  4. Reconfigurable Microfluidics: Real-time Shaping of Virtual Channels through Hydrodynamic Forces
    Taylor, D., and Kaigala, G. V.
    Lab on a Chip, 2020.
    [ Blog ]
  5. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers
    Hemmig, E., Temiz, Y., Gökçe, O., Lovchik, R. D., and Delamarche, E.
    Analytical Chemistry 92(1), 940-946, 2020.
  6. Electrokinetic Scanning Probe
    Ostromohov, N., Rofman, B., Bercovici, M., and Kaigala, G. V.
    Small, 2020.
  7. Spatially multiplexed RNA in situ hybridization to reveal tumor heterogeneity
    Voithenberg, L. V., Huber, D., Khartchenko, A. F., Schraml P., and Kaigala, G. V.
    Nucleic Acids Research 48(3), e17, 2020.

2019

  1. Programmable hydraulic resistor for microfluidic chips using electrogate arrays
    Salva, M., Temiz, Y., Rocca, M., Arango, Y.C., Niemeyer, C.M., Delamarche, E.
    Scientific Reports 9, Article 17242, 2019.
  2. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents
    Gökçe, O., Castonguay, S., Temiz, Y., Gervais, T., Delamarche E.
    Nature 574, 228232, 2019.
    Public view-only version | News and Views article
  3. Spatially resolved genetic analysis of tissue sections enabled by microscale flow confinement retrieval and isotachophoretic purification
    Van Kooten, X., Petrini, L.F.T., Kashyap, A., von Voithenberg, L.V., Bercovici, M., Kaigala, G.V.
    Angewandte Chemie International Edition 58(43) 15259–15262, 2019.
  4. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics
    Pereiro, I., Fomitcheva Khartchenko, A., Petrini, P., and Kaigala, G.V.
    Lab on a Chip 19(14), 2296–2314, 2019.
  5. Electroosmotic Flow Dipole: Experimental Observation and Flow Field Patterning
    Paratore, F., Boyko, E., Kaigala,, G.V., Bercovici, M.
    Physical Review Letters 122, 224502, 2019.
  6. Dynamic microscale flow patterning using electrical modulation of zeta potential
    Paratore, F., Bacheva, V., Kaigala, G.V., Bercovic, M.
    Proceedings of the National Academy of Sciences 116(21) 10258–10263, 2019.
  7. Quantitative microimmunohistochmiestry for the grading of immunostains on tumor tissues
    Kashyap, A., Fomitcheva Khartchenko, A., Pati, P., Gabrani, M., Schraml, P., Kaigala, G.V.
    Nature Biomedical Engineering 3, 478490, 2019.
  8. Immuno-gold silver staining assays on capillary-driven microfluidics for the detection of malaria antigens
    Pham, N.M., Rusch, S., Temiz, Y., Beck, H.P., Karlen, W., Delamarche, E.
    Biomedical Microdevices 21, 24, 2019.
  9. High-quality immunohistochemical stains through computational assay parameter optimization
    Arar, N.M., Pati, P., Kashyap, P., Fomitcheva Khartchenko, A., Goksel, O., Kaigala, G.V., Gabrani, M.
    IEEE Trans. Biomedical Eng. 66(10), 2019.
  10. Underpinning transport phenomena for the patterning of biomolecules
    Pereiro, I., Cors, J.F., Pane, S., Nelson, B.J., Kaigala, G.V.
    Chemical Society Reviews 48(5), 1236–1254, 2019.
  11. Fluidic bypass structures for improving the robustness of liquid scanning probes
    Taylor, D., Kaigala, G.V.
    IEEE Trans. Biomedical Eng. 66(9), 2019.

2018

  1. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?
    Huber, D., Voith von Voithenberg, L., Kaigala, G.V.
    Micro and Nano Engineering 1, 15–24, 2018.
  2. Extraction of electrokinetically separated analytes with on-demand encapsulation
    van Kooten, X.F., Bercovici, M., Kaigala, G.V.
    Lab on a Chip 18(23), 3588–3597, 2018.
  3. Real-time monitoring of fluorescence in situ hybridization kinetics
    Ostromohov, N., Huber, D., Bercovici, M., Kaigala, G.V.
    Analytical Chemistry 90, 11169–11734, 2018.
  4. Malaria and the ‘last’ parasite: how can technology help?
    Pham, N.M., Karlen, W., Beck, H.P., Delamarche, E.
    Malaria J. 17, 260, 2018.
  5. High-content optical codes for protecting rapid diagnostic tests from counterfeiting
    Gökçe, O., Mercandetti, C., Delamarche, E.
    Anal. Chem. 90, 7383–7390, 2018.
  6. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone
    Temiz, Y., Delamarche, E.
    Scientific Reports 8, Article 10603, 2018.
  7. Rapid micro fluorescence in situ hybridization in tissue sections
    Huber, D., Kaigala, G.V.
    Biomicrofluidics 12(4), 042212, 2018.
  8. Electrogates for stop-and-go control of liquid flow in microfluidics
    Arango, Y., Temiz, Y., Gökçe, O., Delamarche, E.
    Appl. Phys. Lett. 112, 153701, 2018.
  9. A bead-based immunogold-silver staining assay on capillary-driven microfluidics
    Pham, N.M., Rusch, S., Temiz, Y., Lovchik, R.D., Beck, H.P., Karlen, W., Delamarche, E.
    Biomedical Microdevices 20, 41, 2018.
  10. Toward microscale flow control using non-uniform electro-osmotic flow
    Paratore, F., Boyko, E., Gat, A.D., Kaigala, G.V., Bercovici, M.
    Proc. SPIE 10491, Microfluidics, BioMEMS, and Medical Microsystems XVI, 104910P, 2018.
  11. Analyte-localization device for point-of-use processing of sub-millimetre areas on surfaces
    Oskooei, A., Kaigala, G.V.
    Sensors and Actuators B: Chemical 258, 961–969, 2018.
  12. Hydrodynamics in cell studies
    Huber, D., Oskooei, A., Casadevall i Solvas, X., Kaigala, G.V.
    Chemical Reviews 118(4) 2042–2079, 2018.

2017

  1. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics
    Tirapu-Azpiroz, J., Temiz, Y., Delamarche, E.
    Biomedical Microdevices 19, 95, 2017.
  2. Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling
    Maffey, A., Storini, C., Diceglie, C., Martelli, C., Sironi, L., Calzarossa, C., Tonna, N., Lovchik, R., Delamarche, E., Ottobrini, L., Bianco, F.
    Scientific Reports 7, Article 13162, 2017.
  3. Focusing analytes from 50 μL into 500 pL: On-chip focusing from large sample volumes using isotachophoresis
    van Kooten, X.F., Truman-Rosentsvit, M., Kaigala, G.V., Bercovici, M.
    Scientific Reports 7, Article 10467, 2017.
  4. Precision diagnostics for mobile health using capillary-driven microfluidics
    Delamarche, E., Temiz, Y., Gökçe, O., Arango, Y.
    CHIMIA International Journal for Chemistry 71(6), 385–385, 2017.
  5. Isotachophoresis-based surface immunoassay
    Paratore, F., Kalman, T.Z., Rosenfeld, T., Kaigala, G.V., Bercovici, M.
    Analytical Chemistry, May 2017.
  6. Tissue lithography: Microscale dewaxing to enable retrospective studies on formalin-fixed paraffin-embedded (FFPE) tissue sections
    Cors, J.F., Kashyap, A., Khartchenko, A.F., Schraml, P., Kaigala, G.V.
    PLoS ONE 12(5): e0176691, 2017.
  7. Chemiluminescence generation and detection in a capillary-driven microfluidic chip
    Ramon, C., Temiz, Y., Delamarche, E.
    Proc. SPIE 10061, Microfluidics, BioMEMS, and Medical Microsystems XV, 100610O, 2017.
  8. Capillary-driven microfluidic chips for miniaturized immunoassays: Efficient fabrication and sealing of chips using a “chip-olate” process
    Temiz, Y., Delamarche, E.
    Microchip Diagnostics, Part A Microchips for Protein Bioassays, in Methods in Molecular Biology, V. Taly, J.-L. Viovy, S. Descroix (Eds), Springer, Vol. 1547, pp. 25–36, 2017.
  9. Capillary-driven microfluidic chips for miniaturized immunoassays: Patterning capture antibodies using microcontact printing and dry-film resists
    Temiz, Y., Lovchik, R.D., Delamarche, E.
    Microchip Diagnostics, Part A Microchips for Protein Bioassays, in Methods in Molecular Biology, V. Taly, J.-L. Viovy, S. Descroix (Eds), Springer, Vol. 1547, pp. 37–47, 2017.
  10. Capillary-driven microfluidics for mobile health: Opportunities and challenges
    Temiz, Y., Gökçe, O., Arango, Y.C., Lovchik, R.D., Mercandetti, C., Delamarche, E.
    Proceedings µTAS 2017, Savannah, 161–166, 2017.

2016

  1. Hydrodynamic thermal confinement: creating thermo-chemical microenvironments on surfaces
    Cors, J.F., Stucki, A., Kaigala, G.V.
    Chemical Communications 52, 13035–13038, 2016.
  2. Centimeter-scale surface interactions using hydrodynamic flow confinements
    Taylor, D.P., Zeaf, I., Lovchik R.D., Kaigala, G.V.
    Langmuir 32(41), 10537–10544, 2016.
  3. Rapid subtractive patterning of live cell layers with a microfluidic probe
    Kashyap, A., Cors, J.C., Lovchik, R.D., Kaigala, G.V.
    J. Vis. Exp. 115, e54447, 2016.
  4. Deep-reaching hydrodynamic flow confinements (DR-HFC): µm-scale liquid localization for open surfaces with topographical variations
    Oskooei, A., Kaigala, G.V.
    IEEE Trans. Biomedical Eng. 99, 2016.
  5. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe
    Kashyab, A., Autebert, J., Delamarche, E., Kaigala, G.V.
    Scientific Reports 6, 29579, 2016.
  6. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry
    Ostromohov, N., Bercovici, M., Kaigala, G.V.
    Lab on a Chip 16, 3015–3023, 2016. Cover page image.
  7. Micro fluorescence in situ hybridization (µFISH) for spatially multiplexed analysis of a cell monolayer
    Huber, D., Autebert, J., Kaigala, G.V.
    Biomedical Microdevices 18(40), 2016.
  8. Convection-enhanced biopatterning with hydrodynamically confined nanoliter volumes of reagents
    Autebert, J., Cors, J., Taylor, D., Kaigala, G.V.
    Anal. Chem. 88(6), 3235–3242, 2016. Cover page image.
  9. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips
    Temiz, Y., Lim, M. and Delamarche, E.
    Proc. SPIE 9705, 2016.

2015

  1. Passive removal of immiscible spacers from segmented flows in a microfluidic probe
    Kooten, X.F., Autebert, J. and Kaigala, G.V.
    Appl. Phys. Lett. 106, 074102, 2015.
  2. Arraying single microbeads in microchannels using dielectrophoresis-assisted mechanical traps
    Tirapu-Azpiroz, J., Temiz, Y. and Delamarche, E.
    Appl. Phys. Lett. 107, 204102, 2015.
  3. Lab-on-a-chip devices: How to close and plug the lab?
    Temiz, Y., Lovchik, R.D., Kaigala, G.V. and Delamarche, E.
    Microelectron. Eng. 32, 156–175, 2015.

2014

  1. “Chip-olate” and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips
    Temiz, Y. and Delamarche, E.
    J. Micromech. Microeng. 24, 097001, 2014.
  2. Heterogeneous integration of gels into microfluidics using a mesh carrier
    Eker, B., Temiz, Y. and Delamarche, E.
    Biomed. Microdevices 16, 829–835, 2014.
  3. The floating microfluidic probe: Distance control between probe and sample using hydrodynamic levitation
    Hitzbleck, M., Kaigala, G.V., Delamarche, E. and Lovchik, R.D.
    Appl. Phys. Lett. 104, 263501, 2014.
  4. Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping
    Temiz, Y., Skorucak, J. and Delamarche, E.
    Proc. SPIE 8976, 89760Y, 2014.
  5. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens
    Cors, J.F., Lovchik, R.D., Delamarche, E. and Kaigala, G.V.
    Rev. Sci. Instrum. 85, 034301, 2014.
  6. Hierarchical hydrodynamic flow confinement: Efficient use and retrieval of chemicals for microscale chemistry on surfaces
    Autebert, J., Kashyap, A., Lovchik, R.D., Delamarche, E. and Kaigala, G.V.
    Langmuir 30, 3640–3645, 2014.
  7. Nested hydrodynamic flow confinement and liquid recirculation: microscale probing and patterning of biological surfaces
    Autebert, J., Cors, J. Kashyap, A., Lovchik, R.D., Delamarche, E and Kaigala, G.V.
    Proceedings µTAS 2014, San Antonio, 99–101.

2013

  1. Advanced capillary soft valves for flow control in self-driven microfluidics
    Hitzbleck, M. and Delamarche, E.
    Micromachines 4(1), 1–8, 2013.
  2. Flock-based microfluidics
    Hitzbleck, M., Lovchik, R.D. and Delamarche, E.
    Adv. Mater. 25, 2672–2676, 2013.
  3. Reagents in microfluidics: An “in” and “out” challenge
    Hitzbleck, M. and Delamarche, E.
    Chem. Soc. Rev. 42, 2013.
  4. Pharmacology on microfluidics: Multimodal analysis for studying cell-cell interaction
    Delamarche, E., Tonna, N., Lovchik, R.D. and Matteoli, M.
    Curr. Opinion Pharmacology 13(5), 821–828, 2013.
  5. Compact microfluidic probe system with self-aligned mounted heads for direct use on inverted microscopes
    Cors, J.F., Lovchik, R.D., Delamarche, E. and Kaigala, G.V.
    Proceedings µTAS 2013, Freiburg, 1625–1627.
  6. Flock-based microfluidic devices with flow control, reagent integration and multiplexing for simple assays
    Hitzbleck, M. and Delamarche, E.
    Proceedings µTAS 2013, Freiburg, 648–650.
  7. Dielectrophoretic trapping of beads in compact capillary-driven systems with multiwall electrodes
    Temiz, Y., Kaigala, G.V. and Delamarche, E.
    Proceedings µTAS 2013, Freiburg, 979–981.
  8. A microfluidic architecture for efficient reagent integration, reagent release, and analyte detection in limited sample volume
    Eker, B., Hitzbleck, M., Lovchik, R.D., Temiz, Y. and Delamarche, E.
    Proceedings µTAS 2013, Freiburg, 1150–1152.

2012

  1. Microfluidics in the open space for performing local chemistries on biological interfaces
    Kaigala, G.V., Lovchik, R.D. and Delamarche, E.
    Angew. Chem. 51, 11224–11240, 2012.
  2. Overflow microfluidic networks: application to the biochemical analysis of brain cell interactions in complex neuroinflammatory scenarios
    Bianco, F., Tonna, N., Lovchik, R.D., Mastrangelo, R., Morini, R., Ruiz, A., Delamarche, E. and Matteoli, M.
    Anal. Chem. 84, 9833–9840, 2012.
  3. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension
    Coyer, S.R., Singh, A., Dumbauld, D.W., Calderwood, D.A., Craig, S., Delamarche, E. and Garcia, A.J.
    J. Cell Science 125, 5110–5123, 2012.
  4. Micro-immunohistochemistry using a microfluidic probe
    Lovchik, R.D., Kaigala, G.V., Georgiadis, M. and Delamarche, E.
    Lab on a Chip 12, 1040–1043, 2012. Cover page image.
  5. Capillary soft valves for microfluidics
    Hitzbleck, M., Avrain, L., Smekens, V., Lovchik, R.D., Mertens, P. and Delamarche, E.
    Lab on a Chip 12, 1972–1978, 2012.
  6. Hydrodynamic levitation of a microfluidic probe for sample–head distance control
    Lovchik, R.D., Kaigala, G.V. and Delamarche, E.
    Proceedings µTAS 2012, Okinawa, 1444–1446.
  7. Bead traps in capillary-driven microfluidics for fluorescence immunoassays
    Stucki, J., Hitzbleck, M. and Delamarche, E.
    Proceedings µTAS 2012, Okinawa, 1927–1929.
  8. Tissue microprocessing
    Kaigala, G.V., Lovchik, R.D. and Delamarche, E.
    Proceedings µTAS 2012, Okinawa, 31–33.

2011

  1. High-grade optical poly(dimethylsiloxane) for microfluidic applications
    Lovchik, R.D., Wolf, H. and Delamarche, E.
    Biomed. Microdevices 13, 1027–1032, 2011.
  2. Controlled release of reagents in capillary-driven microfluidics using reagent integrators
    Hitzbleck, M., Gervais, M. and Delamarche, E.
    Lab on a Chip 11, 2680–2685, 2011.
  3. Capillary-driven multiparametric microfluidic chips for one-step immunoassays
    Gervais, L., Hitzbleck, M. and Delamarche, E.
    Biosens. Bioelectron. 27, 64–70, 2011.
  4. Microfluidic chips for point-of-care immunodiagnostics
    Gervais, L., de Rooij, N. and Delamarche, E.
    Adv. Mater. 23, 151–176, 2011.
  5. Precise placement of gold nanorods by capillary assembly
    Kuemin, C., Stutz, R., Spencer, N.D. and Wolf, H.
    Langmuir 27, 6305–6310, 2011.
  6. A vertical microfluidic probe
    Kaigala, G.V., Lovchik, R.D. and Delamarche, E.
    Langmuir 27, 5686–5693, 2011.
  7. Protein tethering into multiscale geometries by covalent subtractive printing
    Coyer, S. R., Delamarche, E. and Garcia, A. J.
    Adv. Mater. 23, 1550–1553, 2011.
  8. Microfluidic probe for advanced staining of human tissue sections
    Lovchik, R.D., Kaigala, G.V., Georgiadis, M. and Delamarche, E.
    Proceedings µTAS 2011, Seattle, 368–370.
  9. Reagent integrators for the controlled release of picograms of regeants in self-powered microfluidic chips
    Hitzbleck, M., Gervais, L. and Delamarche, E.
    Proceedings µTAS 2011, Seattle, 1885–1887.
  10. Investigating neuroprotective effects of primary glial cells using overflow microfluidic networks
    Bianco, F., Tonna, N., Lovchik, R.D., Morini, R., Ruiz, A., Mastrangelo, R., Delamarche, E. and Matteoli, M.
    Proceedings µTAS 2011, Seattle, 1505–1507.

2010

  1. Precision patterning with luminescent nanocrystal functionalized beads
    Fanizza, E., Malaquin, L., Kraus, T., Wolf, H., Striccoli, M., Micali, N., Agostiano, A. and Curri, M.L.
    Langmuir 26, 14294–14300, 2010.
  2. Selective assembly of sub-micrometer polymer particles
    Kuemin, C., Huckstadt, K. C., Lörtscher, E., Rey, A., Decker, A., Spencer, N.D. and Wolf, H.
    Adv. Mater. 22, 2804–2808, 2010.
  3. Direct write 3-dimensional nanopatterning using probes
    Duerig, U., Pires, D., Knoll, A., Drechsler, U., Despont, M., Wolf, H., Hedrick, J. and DeSilva, E.
    Alternative Lithographic Technologies II, edited by D.J.C. Herr, Proc. SPIE, Vol. 7637 (SPIE, April 2010) 76371E.
  4. Nanoscale three-dimensional patterning of molecular resists by scanning probes
    Pires, D., Hedrick, J. L., De Silva, A., Frommer, J., Gotsmann, B., Wolf, H., Despont, M., Duerig, U., and Knoll, A.W.
    Science 328(5979), 732–735, 2010.
  5. Templated self-assembly of particles
    Kraus, T. and Wolf, H.
    Springer Handbook of Nanotechnology, B. Bhushan (Ed), (Springer-Verlag, Berlin, Heidelberg, 2010) 3rd Ed., Part A Nanostructures, Micro-/Nanofabrication and Materials, Ch.6, pp. 187–210.
  6. Overflow microfluidic networks
    Lovchik, R.D., Bianco, F., Tonna, N., Ruiz, A., Matteoli, M. and Delamarche, E.
    Proceedings µTAS 2010, Groningen, 989–991.
  7. Extended dynamic range capillary-driven microfluidics
    Gervais, L and Delamarche, E.
    Proceedings µTAS 2010, Groningen, 809–811.
  8. Vertical microfluidic probe heads
    Lovchik, R.D., Drechsler, U. and Delamarche, E.
    Proceedings µTAS 2010, Groningen, 1793–1795.
  9. Two complementary methods to characterize long range proximity effects due to develop loading
    Sundberg, L.K., Wallraff, G. M., Fritz, A.M., Davis, B., Zweber, A. E., Lovchik, R.D., Delamarche, E., Senna, T., Komizo, T. and Hinsberg, W.D.
    Proceedings SPIE 7823, 78230G, 2010.
  10. A method to characterize pattern density effects: Chemical flare and develop loading
    Sundberg, L.K., Wallraff, G.M., Fritz, A.M., Zweber, A.E., Benes, Z., Lovchik, R.D., Delamarche, E. and Hinsberg, W.D.
    in Advances in Resist Materials and Processing Technology XXVII, edited by R.D. Allen, Proceedings SPIE, vol. 7639, 76392S, 2010.
  11. Overflow microfluidic networks for open and closed cell cultures on chip
    Lovchik, R.D., Bianco, F., Tonna, N., Ruiz, A., Matteoli, M. and Delamarche, E.
    Anal. Chem. 82, 3936–3942, 2010.
  12. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability
    Lovchik, R.D., Tonna, N., Bianco, F., Matteoli, M. and Delamarche, E.
    Biomed. Microdev. 12, 275–282, 2010.
  13. Large-scale arrays of aligned single viruses
    Solis, D.J., Coyer, S.R., Garcia, A.J. and Delamarche, E.
    Adv. Mater. 22, 111–114, 2010.

2009

  1. One-step immunoassays on capillary-driven microfluidic chips
    Gervais, L. and Delamarche, E.
    Proceedings µTAS 2009, Jeju, 421–423.
  2. Multiparametric microfluidic chips for studying cellular pathways
    Lovchik, R.D., Bianco, F., Matteoli, M. and Delamarche, E.
    Proceedings µTAS 2009, Jeju, 591–593.
  3. Multilayered microfluidic probe heads
    Lovchik, R.D., Drechsler, U. and Delamarche, E.
    J. Micromech. Microeng. 12, 115006, 2009.
  4. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates
    Gervais, L. and Delamarche, E.
    Lab on a Chip 9, 3313–3452, 2009.
  5. Controlled deposition of cells in sealed microfluidics using flow velocity boundaries
    Lovchik, R.D., Bianco, F., Matteoli, M. and Delamarche, E.
    Lab on a Chip 9, 1395–1402, 2009.
  6. Autonomous capillary system for one-step immunoassays
    Zimmermann, M., Hunziker, P. and Delamarche, E.
    Biomed. Microdevices 11, 1–8, 2009.

2008

  1. Matrix effects on the surface plasmon resonance of dry supported gold nanocrystals
    Kuemin, C., Kraus, T., Wolf, H., Spencer, N.D.
    Optics Letters 33, 806–808, 2008.
  2. One-step immunoassay on capillary driven microfluidics
    Gervais, L., Zimmermann, M., Hunziker, P. and Delamarche, E.
    Proceedings µTAS 2008, San Diego, 1949–1951.
  3. Microfluidic selection of library elements
    Solis, J.S., Lovchik, R. and Delamarche, E.
    Proceedings µTAS 2008, San Diego, 224–226.
  4. High-performances immunoassays based on through-stencil patterned antibodies and capillary systems
    Ziegler, J., Zimmermann, M., Hunziker, P. and Delamarche, E.
    Anal. Chem. 80, 1763–1769, 2008.
  5. Valves for autonomous capillary systems
    Zimmermann, M., Hunziker, P. and Delamarche, E.
    Microfluid. Nanofluid. 5, 395–402, 2008.
  6. Cellular microarrays for capillary-driven microfluidics
    Lovchik, R., von Arx, C., Viviani, A. and Delamarche, E.
    Anal. Bioanal. Chem. 390, 801–808, 2008.

2007

  1. Controlled particle placement through convective and capillary assembly
    Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. and Wolf, H.
    Langmuir 23, 11513–11521, 2007.
  2. Fully autonomous microfluidic capillary systems for fast and sensitive surface immunoassays
    Ziegler, J., Zimmermann, M., Hunziker, P. and Delamarche, E.
    Proceedings µTAS 2007, Paris, 101–103.
  3. Valves for autonomous microfluidic capillary systems
    Zimmermann, M., Hunziker, P. and Delamarche, E.
    Proceedings µTAS 2007, Paris, 1492–1494.
  4. High resolution multi-protein nanopatterns
    Coyer, S.R., Garcia, A.J. and Delamarche, E.
    European Cells & Materials 14, 56, 2007.
  5. Facile preparation of complex protein architectures with sub-100-nm resolution on surfaces
    Coyer, S.R., Garcia, A.J. and Delamarche, E.
    Angew. Chem. 46, 6837–6840, 2007.
  6. Microcontact processing for microtechnology and biology
    Delamarche, E.
    Chimia 61, 126–132, 2007.
  7. Nanoparticle printing with single-particle resolution
    Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N.D. and Wolf, H.
    Nature Nanotechnology 2, 570–576, 2007.
  8. An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions
    Ling, X.Y., Malaquin, L., Reinhoudt, D.N., Wolf, H., and Huskens, J.
    Langmuir 23, 9990–9999, 2007.
  9. Screening cell membrane proteins using micromosaic immunoassays
    Wolf, M., Zimmermann, M., Hunziker, P. and Delamarche, E.
    Biomed. Microdevices 9(2), 135–141, 2007.
  10. Capillary pumps for autonomous capillary systems
    Zimmermann, M., Schmid, H., Hunziker, P. and Delamarche, E.
    Lab on a Chip 7, 119–125, 2007.

2006

  1. High-speed microcontact printing
    Helmuth, J. A., Schmid, H., Stutz, R., Stemmer, A., Wolf, H.
    J. Am. Chem. Soc. 128, 9296–9297, 2006.
  2. Advanced flow control of liquids in microfabricated capillary pumps
    Zimmermann, M., Hunziker, P. and Delamarche, E.
    Proceedings of the µTAS 2006, Tokyo, Japan, 612–614.

2005

  1. Printing chemical gradients
    Kraus, T., Stutz, R., Balmer, T.E., Schmid, H., Malaquin, L., Spencer, N.D., Wolf, H.
    Langmuir 21, 7796–7804, 2005.
  2. Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration (SATI) of nanoparticles
    Kraus, T., Malaquin, L., Delamarche, E., Schmid, H., Spencer, N.D. and Wolf, H.
    Adv. Mater. 17, 2438–2442, 2005.
  3. Diffusion of alkanethiols in PDMS and its implications on microcontact printing
    Balmer, T., Schmid, H., Stutz, R., Delamarche, E., Michel, B., Spencer, N. and Wolf, H.
    Langmuir 21, 622–632, 2005.
  4. Continuous flow in microfluidics using controlled evaporation
    Zimmermann, M., Bentley, S., Schmid, H., Hunziker, P. and Delamarche, E.
    Lab on a Chip 5, 1355–1359, 2005.
  5. Microcontact printing of proteins inside microstructures
    Foley, J., Schmid, H., Stutz, R. and Delamarche, E.
    Langmuir 21, 11296–11303, 2005.
  6. Assembly and printing of micro and nano objects
    Kraus, T., Malaquin, L., Delamarche, E., Schmid, H., Spencer, N.D. and Wolf, H.
    Proceedings of the µTAS 2005, Boston, MA, 539–541.
  7. Locally controlling the environment of a microfluidic chip and programming its flow rates
    Zimmermann, M., Bentley, S., Juncker, D., Schmid, H., Hunziker, P. and Delamarche, E.
    Proceedings of the µTAS 2005, Boston, MA, 578–580.
  8. Capillary effects used for liquid confinement and automatic flow control in microfluidic probes
    Juncker, D., Schmid, H. and Delamarche, E.
    Proceedings of the µTAS 2005, Boston, MA, 596–598.
  9. Microfluidic probe with hydrodynamic flow confinement
    Juncker, D., Schmid, H. and Delamarche, E.
    Proceedings of the µTAS 2005, Boston, MA, 1048–1050.
  10. Engineering microfluidic chips with integrated binding sites for ultraminiaturized immunoassays
    Foley, J., Schmid, H., Stutz, R. and Delamarche, E.
    Proceedings of the µTAS 2005, Boston, MA, 250–252.
  11. Microfluidics for processing surfaces and miniaturizing biological assays
    Delamarche, E., Juncker, D. and Schmid, H.
    Adv. Mater., invited review, 17, 2911–2933, 2005.
  12. Multipurpose scanning microfluidic probe
    Juncker, D., Schmid, H. and Delamarche, E.
    Nature Materials 4, 622–628, 2005.
  13. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays
    Zimmermann, M., Delamarche, E., Wolf, M. and Hunziker, P.
    Biomed. Microdev. 7, 99–110, 2005.

2004

  1. High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems
    Cesaro-Tadic, S., Dernick, G., Juncker, D., Buurman, G., Kropshofer, H., Michel, B., Fattinger, C., Delamarche, E.
    Lab on a Chip 4, 563–569, 2004.
  2. Microcontact printing of proteins
    Delamarche, E.
    In Nanobiotechnology, C. Mirkin and N. Niemeyer (Eds) Wiley-VCH GmbH, 2004.
  3. Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks
    Wolf, M., Juncker, D., Michel, B., Hunziker, P., Delamarche, E.
    Biosens. Bioelectron. B 19, 1193–1202, 2004.

2003

  1. Self-assembled microarrays of attoliter molecular vessels
    Stamou, D., Duschl, C., Delamarche, E. and Vogel, H.
    Angew. Chem. Int. Ed. 42, 5580–5583, 2003.
  2. Fabricating arrays of single proteins on glass using microcontact printing
    Renault, J.P., Bernard, A., Bietsch, A., Michel, B., Bosshard, H.R., Kreiter, M., Hecht, B., Wild, U. and Delamarche, E.
    J. Phys. Chem. B 107, 703–711, 2003.
  3. Selective wet-etching of microcontact-printed Cu substrates with control over the etch profile
    Geissler, M., Schmid, H., Michel, B., and Delamarche, E.
    Microelec. Microeng. 67–68, 326–332, 2003.
  4. Microcontact printing using poly(dimethylsiloxane) stamps hydrophilized using poly(ethylene oxide)-silanes
    Delamarche, E., Donzel, C., Kamounah, F.S., Wolf, H., Geissler, M., Stutz, R., Schmidt-Winkel, P., Michel, B., Mathieu, H.J. and Schaumburg, K.
    Langmuir 19, 8749–8758, 2003.
  5. Fabrication of metal nanowires using microcontact printing
    Geissler, M., Wolf, H., Stutz, R., Delamarche, E., Grummt, U.-W., Michel, B. and Bietsch, A.
    Langmuir 19, 6301–6311, 2003.
  6. Direct patterning of NiB on glass substrates using microcontact printing and electroless deposition
    Geissler, M., Kind, H., Schmidt-Winkel, P., Michel, B. and Delamarche, E.
    Langmuir 19, 6283–6296, 2003.
  7. Electroless deposition of Cu on glass and patterning with microcontact printing
    Delamarche, E., Vichiconti, J., Hall, S., Geissler, M., Graham, W., Michel, B. and Nunes, R.
    Langmuir 19, 6567–6569, 2003.
  8. Patterning NiB electroless deposited on glass using an electroplated Cu mask, microcontact printing, and wet etching
    Delamarche, E., Geissler, M., Magnuson, R., Schmid, H. and Michel, B.
    Langmuir 19, 5892–5897, 2003.
  9. Electroless deposition of NiB on 15 inch glass substrates for the fabrication of transistor gates for liquid crystal displays
    Delamarche, E., Geissler, M., Vichiconti, J., Graham, W.S., Andry, P.A., Flake, J.C., Fryer, P.M., Nunes, R.W., Michel, B., O’Sullivan, E.J., Schmid, H., Wolf, H. and Wisnieff, R.L.
    Langmuir 19, 5923–5935, 2003.
  10. Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing
    Schmid, H., Wolf, H., Allenspach, R., Riehl, H., Karg, S., Michel, B. and Delamarche, E.
    Adv. Func. Mater. 13, 145–153, 2003.

2002

  1. Autonomous microfluidic capillary system
    Juncker, D., Schmid, J., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij, N. and Delamarche, E.
    Anal. Chem. 74, 6139–6144, 2002.
  2. Fabricating microarrays of functional proteins using affinity contact printing
    Renault, J.P., Bernard, A., Juncker, D., Michel, B., Bosshard, H.R. and Delamarche, E.
    Angew. Chem. Int. Ed. 41, 2320–2323, 2002.
  3. Microfluidic capillary systems for the autonomous transport of bio/chemicals
    Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Michel, B., de Rooij, N. and Delamarche, E.
    In Micro Total Analysis Systems, Y. Baba, S. Shoji and A. van den Berg (Eds.) Springer, 952–954, 2002.
  4. Positive microcontact printing
    Delamarche, E., Geissler, M., Wolf, H. and Michel, B.
    J. Am. Chem. Soc. 124, 3834–3835, 2002.
  5. Defect-tolerant and directional wet etch systems for using monolayers as resists
    Geissler, M., Schmid, H., Bietsch, A., Michel, B. and Delamarche, E.
    Langmuir 18, 2374–2377, 2002.
  6. Self-assembled monolayers of alkanethiols on palladium and their use in microcontact printing
    Carvalho, A., Geissler, M., Schmid, H., Michel, B. and Delamarche, E.
    Langmuir 18, 2406–2412, 2002.

2001

  1. Printing meets lithography: Soft approaches to high-resolution patterning
    Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J.P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R. and Wolf, H.
    IBM J. Res. Develop. 45, 697–719, 2001.
  2. Affinity-contact printing of functional cell adhesion molecules for neuronal cell patterning
    Bernard, A., Fitzli, D., Sonderegger, P., Delamarche, E., Michel, B., Bosshard, H.R. and Biebuyck, H.A.
    Nature Biotechnology 19, 866–869, 2001.
  3. Soft and rigid 2-level microfluidic networks for patterning surfaces
    Juncker, D., Schmid, H., Bernard, A., Caelen, I., Michel, B., de Rooij, N. and Delamarche, E.
    J. Micromech. Microeng. 11, 532–541, 2001.
  4. Microfluidic networks for patterning biomolecules and performing bioassays
    Juncker, D., Bernard, A., Caelen, I., Schmid, H., Papra, A., Michel, B., de Rooij, N. and Delamarche, E.
    Proceedings of the µTAS 2001, 429–431.
  5. Microfluidic networks of polydimethylsiloxane, Si and Au coated with polyethylene glycol for patterning proteins onto surfaces
    Papra, A., Bernard, A., Juncker, D., Larsen, N. B., Michel, B. and Delamarche, E.
    Langmuir 17, 4090–4095, 2001.
  6. Micromosaic immunoassays
    Bernard, A., Michel, B. and Delamarche, E.,
    Anal. Chem. 73, 8–12, 2001.
  7. Hydrophilic poly(dimethylsloxane) stamps for microcontact printing
    Donzel, C., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J. and Delamarche, E.
    Adv. Mater. 13, 1164–1167, 2001.
  8. Contrast mechanisms in high-resolution contact lithography: A comparative study
    Paulus, M., Schmid, H., Michel, B., Martin, O.J.F.
    Microel. Eng. 57–58, 109–116, 2001.

2000

  1. Formation of gradients of proteins on surfaces with microfluidic networks
    Caelen, I., Bernard, A., Juncker, D., Michel, B., Heinzelmann, H. and Delamarche, E.
    Langmuir 16, 9125–9130, 2000.
  2. Microcontact printing of proteins
    Bernard, A., Renault, J.P., Michel, B., Bosshard, H.R. and Delamarche, E.
    Adv. Mater. 12, 1067–1070, 2000.
  3. Microcontact printing chemical patterns with flat stamps
    Geissler, M., Bernard, A, Bietsch, A., Schmid, H., Michel, B. and Delamarche, E.
    J. Am. Chem. Soc. 122, 6303–6304, 2000.
  4. Stress at the solid-liquid interface of self-assembled monolayers on gold by a nanomechanical sensor
    Fritz, J., Baller, M.K., Lang, H.P., Meyer, E., Güntherodt, H.-J., Delamarche, E., Gerber, C. and Gimzewski, J.K.
    Langmuir 16, 9694–9696, 2000.
  5. Patterned electroless deposition of copper by microcontact printing palladium(II) complexes on titanium-covered surfaces
    Kind, H., Geissler, M., Schmid, H., Michel, B., Kern, K. and Delamarche, E.
    Langmuir 16, 6367–6373, 2000.
  6. Conformal contact and pattern stability of stamps used for soft lithography
    Bietsch, A. and Michel, B.
    J. Appl. Phys. 88, 4310–4318, 2000.
  7. Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography
    Schmid, H. and Michel, B.
    Macromolecules 33, 3042–3049, 2000.

1999

  1. Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold
    Lü, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., and Güntherodt, H.-J.
    Langmuir 15, 8184–8188, 1999.
  2. Surface potential studies of self-assembling monolayers using Kelvin probe force microscopy
    Lü, J., Eng, L., Bennewitz, R., Meyer, E., Güntherodt, H.-J., Delamarche, E. and Scandella, L.
    Surf. Interface Anal. 27(5-6), 368–373, 1999.
  3. Contact inking PDMS stamps for microcontact printing alkanethiols on gold
    Libioulle, L., Bietsch, A., Schmid, H., Michel, B. and Delamarche, E.
    Langmuir 15, 300–304, 1999.

1998

  1. Printing patterns of proteins
    Bernard, A., Delamarche, E., Schmid, H., Michel, B., Bosshard, H.R. and Biebuyck, H.A.
    Langmuir 14, 2225–2229, 1998.
  2. Microfluidic networks for chemical patterning of substrates: Design and applications to bioassays
    Delamarche, E., Bernard, A., Schmid, H., Bietsch, A., Michel, B. and Biebuyck, H.A.
    J. Am. Chem. Soc. 120, 500–508, 1998.
  3. Transport mechanisms of alkanethiols during microcontact printing on gold
    Delamarche, E., Schmid, H., Bietsch, A., Larsen, N.B., Rothuizen, H., Michel, B. and Biebuyck, H.A.
    J. Phys. Chem. B 102, 3324–3334, 1998.
  4. Surface stress in the self-assembly of alkanethiols on gold probed by a force microscopy technique
    Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E. and Güntherodt, H.-J.
    Appl. Phys. A 66, S55–S59, 1998.
  5. Light-coupling masks for lensless, sub-wavelength optical lithography
    Schmid, H., Biebuck, H., Michel, B. and Martin, O.J.F.
    Appl. Phys. Lett. 72, 2379–2381, 1998.

1997

  1. Patterned delivery of immunoglobulins to surfaces using microfluidic networks
    Delamarche, E., Bernard, A., Schmid, H., Michel, B. and Biebuyck, H.
    Science 276, 779–781, 1997.
  2. Integration of silicon micromechanical arrays with molecular monolayers for miniaturized sensor systems
    Berger, R., Lang, H.P., Delamarche, E., Gerber, Ch., Gimzewski, J.K., Andreoli, C., Brugger, J., Despont, M. and Vettiger, P.
    Sensors and their Applications VIII, Institute of Physics Publishing, 71–76, 1997.
  3. Making gold nanostructures using positive lithography with electron brams and self-assembled monolayers
    Delamarche, E., Hoole, A.C.F., Michel, B., Wilkes, S., Despont, M., Welland, M.E. and Biebuyck, H.A.
    J. Phys. Chem. 101, 9263–9269, 1997.
  4. Stability of molded microstructures in polydimethylsiloxane
    Delamarche, E., Biebuyck, H.A., Schmid, H. and Michel, B.
    Adv. Mater. 9, 741–746, 1997.
  5. Surface stress in the self-assembly of alkanethiols on gold
    Berger, R., Delamarche, E., Lang, H.P., Gerber, Ch., Gimzewski, J.K., Meyer, E. and Güntherodt, H.-J.
    Science 276, 2021–2024, 1997.
  6. Lithography beyond light: Microcontact printing with monolayer resists
    Biebuyck, H.A., Larsen, N.B., Delamarche, E. and Michel, B.
    IBM J. Res. Develop. 41, 159–170, 1997.
  7. Order in microcontact printed self-assembled monolayers
    Larsen, N.B., Biebuyck, H.A., Delamarche, E. and Michel, B.
    J. Am. Chem. Soc. 119, 3017–3026, 1997.

1996

  1. Immobilization of antibodies on a photoactive self-assembled monolayer on gold
    Delamarche, E., Sundarababu, G., Biebuyck, H., Michel, B., Gerber, C., Sigrist, H., Wolf, H., Ringsdorf, H., Xanthopoulos, N. and Mathieu, H.J.
    Langmuir 12, 1997–2006, 1996.
  2. Golden interfaces: The surface of self-assembled monolayers
    Delamarche, E., Michel, B., Biebuyck, H. A. and Gerber, Ch.
    Adv. Mater. 8, 719–729, 1996.
  3. Structure and stability of self-assembled monolayers
    Delamarche, E. and Michel, B.
    Thin Solid Films 273, 54–60, 1996.

1995

  1. Recognition of individual tail groups in self-assembled monolayers
    Takami, T., Delamarche, E., Michel, B., Gerber, Ch., Wolf, H. and Ringsdorf, H.
    Langmuir 11, 3876–3881, 1995.
  2. End-group dominated molecular order in self-assembled monolayers
    Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, Ch., Jaschke, M., Butt, H.-J. and Bamberg, E.
    J. Phys. Chem. 99, 7102–7107, 1995.
  3. STM analysis of cytochrome c immobilized on SAMs on gold
    Delamarche, E., Biebuyck, H.A., Michel, B., Sundarababu, G., Sigrist, H., Wolf, H. and Ringsdorf, H.
    Procedures in Scanning Probe Microscopies, Colton et al. (eds), Wiley, 7.3.4.1–7.3.4.5, 1995.

1994

  1. Thermal stability of self-assembled monolayers
    Delamarche, E., Michel, B., Kang, H. and Gerber, Ch.
    Langmuir 10, 4103–4108, 1994.
  2. The structure of hydrophilic self-assembled monolayers: A combined scanning tunneling microscopy and computer simulation study
    Sprik, M., Delamarche, E., Michel, B., Röthlisberger, U., Klein, M.L., Wolf, H. and Ringsdorf, H.
    Langmuir 10, 4116–4130, 1994.
  3. Real-space observation of nanoscale molecular domains in self-assembled monolayers
    Delamarche, E., Michel, B., Gerber, Ch., Anselmetti, D., Güntherodt, H.-J., Wolf, H. and Ringsdorf, H.
    Langmuir 10, 2869–2871, 1994.
  4. Domain and Molecular Superlattice Structure of Dodecanethiol Self-Assembled on Au(111)
    Anselmetti, D., Baratoff, A., Güntherodt, H.-J., Delamarche, E., Michel, B., Gerber, Ch., Kang, H., Wolf, H. and Ringsdorf, H.
    Europhys. Lett. 27, 365–370, 1994.