Molecular electronics

Overview

The field of molecular electronics is aimed at the use of small ensembles or even individual molecules as functional building blocks in electronic circuitry. Single-molecule devices appear to be ideal candidates for future nano-electronics, as they possess the potential for creating high-density devices with low power consumption in combination with high speed. Moreover, because of their internal molecular structure, molecules may provide novel intrinsic functionality not found in today's silicon electronics.

Although molecular electronics can be regarded as a possible path to drive miniaturization beyond the limits being approached by conventional semiconductor technology, it also presents a significant challenge because of the need for reproducible fabrication at the molecular scale. If molecular devices can take advantage of self-assembly processes, however, molecular devices may also feature low manufacturing costs.

References

[1] E. Loertscher,
Wiring Molecules to Circuits.
Nature Nanotechnology 8 (2013).
DOI

[1] P. N. Nirmalraj, H. Schmid, B. Gotsmann, H. Riel,
Nanoscale Origin of Defects at Metal/Molecule Engineered Interfaces.
Langmuir 29(5) 1340–1345 (2013).
DOI

[2] E. Lörtscher, V. Geskin, B. Gotsmann, J. Fock, J. K. Sørensen, T. Bjørnholm, J. Cornil, H. S. J. van der Zant, H. Riel,
Bonding and Electronic Transport Properties of Fullerene and Fullerene Derivatives in Break-Junction Geometries.
Small (2012).
DOI

[3] E. Lörtscher, B. Gotsmann, Y. Lee, L. Yu, C. Rettner, and H. Riel,
Transport properties of a single-molecule diode.
ACS Nano 6(6) 4931–4939 (2012).
DOI

[4] B. Gotsmann, H. Riel, and E. Lörtscher,
Direct electrode-electrode tunneling in break-junction measurements of molecular conductance.
Phys. Rev. B 82(20) 1–12 (2011).

[5] E. Lörtscher,
The Role of Symmetry in Single-Molecule Junctions.
Chem. Phys. Chem. 12, 2887–2889 (2011).

[6] M. Müri, B. Gotsmann, Y. Leroux, M. Trouwborst, E. Lörtscher, H. Riel, and M. Mayor,
Modular Functionalization of Electrodes by Cross Coupling Reactions at their Surfaces.
Advanced Functional Materials 21, 3706–3714 (2011).

[7] J. Fock, J. K. Sørensen, E. Lörtscher, T. Vosch, C. A. Martin, H. Riel, K. Kilså, T. Bjørnholm, and H. van der Zant,
A Statistical Approach to Inelastic Electron Tunneling Spectrocsopy on Fullerene-terminated Molecules.
Physical Chemistry Chemical Physics 13, 14325–32 (2011).

[8] E. Lörtscher, C. J. Cho, M. Mayor, M. Tschudy, C. Rettner, and H. Riel,
Influence of the Anchor Group on Charge Transport through Single-Molecule Junctions.
Chem. Phys. Chem. 12, 1677–1682 (2011).

[9] E. Lörtscher, H. Riel,
Molecular Electronics – Resonant Transport through Single Molecules.
CHIMIA 6 (2010).

[10] E. Lörtscher, M. Elbing, M. Tschudy, C. von Hänisch, H. B. Weber, M. Mayor, H. Riel,
Charge Transport through Molecular Rods with Reduced π-Conjugation.
Chem. Phys. Chem. 15, 2252–2258 (2008).

[11] M. Ruben, A. Landa, E. Lörtscher, H. Riel, M. Mayor, H. Görls, H. Weber, A. Arnold, F. Evers,
Charge Transport through a Cardan-joint Molecule.
Small 4(12) 2229–35 (2008).

[12] E. Lörtscher, H. B. Weber, and H. Riel,
Statistical Approach to Investigating Transport through Single Molecules.
Physical Review Letters 98, 176807 (2007).

[13] E. Lörtscher, J. W. Ciszek, J. Tour, and H. Riel,
Reversible and Controllable Switching of a Single-Molecule Junction.
Small 2, 973 (2006).