Cantilever technology


At IBM Research Zurich, we have a long history of developing customized cantilevers for applications in storage, metrology, nanoscale surface analysis, environmental sensing and nanopatterning. Our cantilever technology platform encompasses

  • miniaturized cantilever arrays for conducting probing
  • high-resonant-frequency AFM cantilever for ultra-force-sensitive applications
  • low-cost, all-plastic AFM cantilevers
  • cantilevers with integrated actuator
  • ultrasoft cantilevers used in NMR experiments
  • arrays of cantilever used for chemical sensing.

Addressing some of the applications of the cantilever technology, we have developed a MEMS-based nanopositioning system that includes a subnanometer-resolution thermal positioning sensor and a MEMS-based, 2-axis electromagnetic scanner.

Currently, our research focus in cantilever technology is on thermomechanical cantilevers for probe-based nanopaterning as well as on tip technology such as conducting tips and tips made of high wear-resistant material such as diamond-like carbon.


[1] M. Despont, H. Takahashi, S. Ichihara, Y. Shirakawabe, N. Shimizu, A. Inoue, W. Haeberle, G.K. Binnig and P. Vettiger,
“Dual-Cantilever AFM Probe for Combining Fast and Coarse Imaging with High-Resolution Imaging,”
in Proc. IEEE 13th Annual Int'l Conf. on Micro Electro Mechanical Systems, "MEMS 2000", Miyazaki, Japan, Jan. 23-27, 2000 (IEEE, Piscataway, NJ, 2000), IEEE Cat.No.00CH36308, pp. 126-131 2.

[2] G. Genolet, M. Despont, P. Vettiger, D. Anselmetti and N.F. de Rooij,
“All-Photoplastic, Soft Cantilever Cassette Probe for Scanning Force Microscopy,”
J. Vac. Sci. Technol. B 18(2), 617-620 (2000).

[3] D.W. Lee, A. Wetzel, R. Bennewitz, E. Meyer, M. Despont, P. Vettiger, Ch. Gerber,
"Switchable cantilever for a time-of-flight scanning force microscope"
Applied Physics Letters, v 84, n 9, Mar 1, 2004, p 1558-1560.

[4] J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug,
"Miniaturized single-crystal silicon cantilevers for scanning force microscopy,"
Appl. Phys. Lett. 86, 134101 (2005).

[5] M.A. Lanz, G.K. Binnig, M. Despont, U. Drechsler,
"A Micromechanical Thermal Displacement Sensor with Nanometer Resolution, "
Nanotechnology 16 (August 2005) 1089-1094.

[6] D.-W. Lee, J.-H. Kang, U. Gysin, S. Rast, E. Meyer, M. Despont, Ch. Gerber,
"Fabrication and evaluation of single-crystal silicon cantilevers with ultra-low spring constants,"
J. Micromech. Microeng. 15 (2005) 21792183.

[7] M.A. Lantz, H.E. Rothuizen, U. Drechsler, W. Haberle, M. Despont,
"A vibration resistant nano-positioner for mobile parallel-probe storage applications,"
J. Microelectomech. Syst. 16(1), pp: 130 139 (February 2007).

[8] M. K. Ghatkesar, V. Barwich, T. Braun, J.P. Ramseyer, Ch. Gerber, M. Hegner, H. P. Lang, U. Drechsler, M. Despont,
"Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers,"
Nanotechnology 18 (2007) 445502 (8pp).

[9] N. Weiss, U. Drechsler, M. Despont, S.S.P. Parkin,
"Cryogenic current-in-plane tunneling apparatus,"
Rev. Sci. Instrum. 79, 123902 (2008)8.

[10] J.B.C. Engelen, H.E. Rothuizen, U. Drechsler, R. Stutz, M. Despont, L. Abelmann and M.A. Lantz,
"A mass-balanced through-wafer electrostatic x/y-scanner for probe data storage,"
Microelectronic Engineering, 86 (2009), pp 1230-1233.